Pipeline Report

# PRECISION MEDICINE TO DRUG DISCOVERY ## AI Factory Pipeline Report --- **Healthcare & Life Sciences AI Factory** *Transforming Patient DNA into Therapeutic Candidates* --- [![NVIDIA DGX Spark](https://img.shields.io/badge/Platform-NVIDIA%20DGX%20Spark-76B900?style=for-the-badge&logo=nvidia)](https://www.nvidia.com/en-us/data-center/dgx-spark/) [![Status](https://img.shields.io/badge/Status-Production%20Ready-success?style=for-the-badge)]() [![Pipeline](https://img.shields.io/badge/Pipeline-End%20to%20End-blue?style=for-the-badge)]() **January 2026**
--- ## Executive Summary The **HCLS AI Factory** represents a breakthrough in precision medicine, delivering an end-to-end platform that transforms raw patient DNA sequencing data into novel drug candidates in under **5 hours**. Built on NVIDIA's accelerated computing stack and powered by advanced AI, this platform reduces what traditionally takes months of manual analysis to a streamlined, GPU-accelerated workflow. ### Key Achievements | Metric | Value | Impact | |:-------|:-----:|:-------| | **Processing Time** | ~5 hours | 99% reduction from traditional methods | | **Lines of Code** | 36,000+ | Production-grade implementation | | **Variant Coverage** | 3.5M | Comprehensive genomic database | | **Target Genes** | 201 | Clinically validated targets | | **Druggability Rate** | 85% | High therapeutic potential | --- ## Platform Architecture
                    PRECISION MEDICINE TO DRUG DISCOVERY
    ════════════════════════════════════════════════════════════════

    ┌─────────────────┐     ┌─────────────────┐     ┌─────────────────┐
    │                 │     │                 │     │                 │
    │    STAGE 1      │────▶│    STAGE 2      │────▶│    STAGE 3      │
    │                 │     │                 │     │                 │
    │   GENOMICS      │     │   RAG/CHAT      │     │   DRUG          │
    │   PIPELINE      │     │   PIPELINE      │     │   DISCOVERY     │
    │                 │     │                 │     │                 │
    │  ┌───────────┐  │     │  ┌───────────┐  │     │  ┌───────────┐  │
    │  │  FASTQ    │  │     │  │  VCF      │  │     │  │  TARGET   │  │
    │  │    ↓      │  │     │  │    ↓      │  │     │  │    ↓      │  │
    │  │  VCF     │  │     │  │  TARGET   │  │     │  │ MOLECULES │  │
    │  └───────────┘  │     │  └───────────┘  │     │  └───────────┘  │
    │                 │     │                 │     │                 │
    │  120-240 min      │     │  Interactive    │     │  Minutes        │
    └─────────────────┘     └─────────────────┘     └─────────────────┘
            │                       │                       │
            └───────────────────────┴───────────────────────┘
                    ┌───────────────────────────────┐
                    │     NVIDIA DGX SPARK          │
                    │  128GB GPU | 512GB RAM | 144  │
                    └───────────────────────────────┘
--- ## Stage 1: Genomics Pipeline ### Overview The Genomics Pipeline transforms raw DNA sequencing data (FASTQ) into variant calls (VCF) using NVIDIA Parabricks, achieving **10-50x acceleration** over traditional CPU-based methods. ### Technical Specifications | Component | Technology | Performance | |:----------|:-----------|:------------| | **Alignment** | BWA-MEM2 (GPU-accelerated) | 20-45 minutes | | **Sorting** | Coordinate sorting with deduplication | Included | | **Indexing** | samtools index + flagstat | 2-5 minutes | | **Variant Calling** | Google DeepVariant (GPU) | 10-35 minutes | ### Data Flow
┌──────────────────────────────────────────────────────────────────────┐
                        GENOMICS PIPELINE                              
├──────────────────────────────────────────────────────────────────────┤
                                                                       
   INPUT                    PROCESSING                    OUTPUT       
   ─────                    ──────────                    ──────       
                                                                       
   ┌─────────┐    ┌─────────────────────────────┐    ┌─────────┐     
    FASTQ                                          BAM         
    R1/R2   │───▶│     NVIDIA PARABRICKS       │───▶│  File        
    ~200GB           fq2bam + DeepVariant         ~100GB       
   └─────────┘                                     └────┬────┘     
                     ┌───────────────────────┐                    
   ┌─────────┐        GRCh38 Reference           ┌────▼────┐     
   Reference│───▶│    Genome (3.1GB)               VCF         
    GRCh38         └───────────────────────┘       File        
   └─────────┘                                      ~11.7M       
                  └─────────────────────────────┘    variants      
                                                      └─────────┘     
                                                                       
   TIMING: 120-240 minutes (vs. 24-48 hours on CPU)                     
                                                                       
└──────────────────────────────────────────────────────────────────────┘
### Performance Metrics | Metric | Value | |:-------|------:| | Input Size | ~200 GB (paired-end FASTQ) | | Output Variants | ~11.7 million | | Processing Time | 120-240 minutes | | GPU Utilization | 85-95% | | Accuracy | >99% (DeepVariant) | --- ## Stage 2: RAG/Chat Pipeline ### Overview The RAG (Retrieval-Augmented Generation) Pipeline enables natural language queries across millions of genomic variants, synthesizing AI-powered answers grounded in clinical evidence. ### Technical Specifications | Component | Technology | Capacity | |:----------|:-----------|:---------| | **Vector Database** | Milvus | 3.5M embeddings | | **Embedding Model** | BGE-small-en-v1.5 | 384 dimensions | | **Knowledge Base** | Clinker | 201 genes, 150+ diseases | | **LLM** | Claude (Anthropic) | claude-sonnet-4 | | **Clinical Data** | ClinVar | 4.1M variants | | **AI Predictions** | AlphaMissense | 71M predictions | ### Architecture
┌──────────────────────────────────────────────────────────────────────┐
                         RAG/CHAT PIPELINE                             
├──────────────────────────────────────────────────────────────────────┤
                                                                       
                        ┌─────────────────┐                           
                           User Query                               
                         "What variants  │                           │
                          affect VCP?"   │                           │
                        └────────┬────────┘                           
                                                                      
                                                                      
   ┌─────────────────────────────────────────────────────────────┐   
                       EMBEDDING LAYER                              
                     BGE-small-en-v1.5                              
                      384 Dimensions                                
   └─────────────────────────────┬───────────────────────────────┘   
                                                                      
                                                                      
   ┌─────────────────────────────────────────────────────────────┐   
                        MILVUS VECTOR DB                            
     ┌──────────────┐  ┌──────────────┐  ┌──────────────┐          
        ClinVar       AlphaMissense     Clinker              
       4.1M vars       71M scores      201 genes             
     └──────────────┘  └──────────────┘  └──────────────┘          
   └─────────────────────────────┬───────────────────────────────┘   
                                                                      
                                                                      
   ┌─────────────────────────────────────────────────────────────┐   
                         CLAUDE LLM                                 
                 Evidence Synthesis & Reasoning                     
                    Grounded in Citations                           
   └─────────────────────────────┬───────────────────────────────┘   
                                                                      
                                                                      
                        ┌─────────────────┐                           
                          AI Response                               
                          + Citations                               
                          + Evidence                                
                        └─────────────────┘                           
                                                                       
└──────────────────────────────────────────────────────────────────────┘
### Knowledge Base Coverage | Therapeutic Area | Target Genes | Key Diseases | |:-----------------|:------------:|:-------------| | Oncology | 45 | Breast, Lung, Colorectal Cancers | | Neurology | 38 | ALS, FTD, Parkinson's, Alzheimer's | | Rare Disease | 52 | Inherited Metabolic Disorders | | Cardiovascular | 28 | Cardiomyopathy, Arrhythmia | | Immunology | 22 | Autoimmune Disorders | | Ophthalmology | 16 | Retinal Dystrophies | ### Sample Queries
Query: "What pathogenic variants are associated with VCP?"

Response: Based on clinical evidence from ClinVar and AlphaMissense:

 VCP R155H (rs121909331) - Pathogenic
  - Associated with IBMPFD (Inclusion Body Myopathy with Paget's Disease)
  - AlphaMissense Score: 0.94 (Likely Pathogenic)

 VCP R191Q (rs121909332) - Pathogenic
  - Causes familial ALS and FTD
  - 85% druggability confidence

 VCP A232E (rs121909333) - Pathogenic
  - Multi-system proteinopathy
  - Structure available: PDB 8OOI

Target Hypothesis: VCP is a validated therapeutic target for
neurodegenerative disease with known inhibitors in clinical development.
--- ## Stage 3: Drug Discovery Pipeline ### Overview The Drug Discovery Pipeline leverages NVIDIA BioNeMo NIM microservices to generate novel drug-like molecules from validated protein targets, complete with binding pose predictions and drug-likeness scoring. ### Technical Specifications | Component | Technology | Function | |:----------|:-----------|:---------| | **Structure Retrieval** | RCSB PDB API | Cryo-EM/X-ray structures | | **Molecule Generation** | BioNeMo MolMIM | Novel analog creation | | **Molecular Docking** | BioNeMo DiffDock | Binding pose prediction | | **3D Conformers** | RDKit | Energy minimization | | **Drug Scoring** | QED + Lipinski | Drug-likeness evaluation | | **Report Generation** | ReportLab | Professional PDF output | ### Pipeline Flow
┌──────────────────────────────────────────────────────────────────────┐
│                      DRUG DISCOVERY PIPELINE                          │
├──────────────────────────────────────────────────────────────────────┤
│                                                                       │
│  PHASE 1: STRUCTURE RETRIEVAL                                        │
│  ─────────────────────────────                                       │
│  ┌─────────────┐    ┌─────────────────────────────────────────┐     │
│  │   Target    │───▶│            RCSB PDB API                  │     │
│  │   (VCP)     │    │   8OOI: WT Hexamer (2.9Å, Cryo-EM)      │     │
│  └─────────────┘    │   9DIL: Mutant (3.2Å)                    │     │
│                     │   5FTK: +CB-5083 Inhibitor (2.3Å)        │     │
│                     └─────────────────────────────────────────┘     │
│                                       │                              │
│                                       ▼                              │
│  PHASE 2: MOLECULE GENERATION                                        │
│  ────────────────────────────                                        │
│  ┌─────────────┐    ┌─────────────────────────────────────────┐     │
│  │ Seed Mol    │───▶│           BioNeMo MolMIM                 │     │
│  │  (CB-5083)  │    │      Masked Language Modeling            │     │
│  │   SMILES    │    │      Generate Novel Analogs              │     │
│  └─────────────┘    └─────────────────────────────────────────┘     │
│                                       │                              │
│                                       ▼                              │
│  PHASE 3: MOLECULAR DOCKING                                          │
│  ──────────────────────────                                          │
│  ┌─────────────────────────────────────────────────────────────┐    │
│  │                    BioNeMo DiffDock                          │    │
│  │           Diffusion-Based Docking Predictions                │    │
│  │              Binding Pose Generation                         │    │
│  └─────────────────────────────────────────────────────────────┘    │
│                                       │                              │
│                                       ▼                              │
│  PHASE 4: SCORING & RANKING                                          │
│  ──────────────────────────                                          │
│  ┌────────────────┐ ┌────────────────┐ ┌────────────────┐           │
│  │   Lipinski     │ │      QED       │ │     ADMET      │           │
│  │   Rule of 5    │ │    Score       │ │   Properties   │           │
│  │   MW ≤ 500     │ │   0.0-1.0      │ │   Absorption   │           │
│  │   LogP ≤ 5     │ │  Drug-likeness │ │   Metabolism   │           │
│  └────────────────┘ └────────────────┘ └────────────────┘           │
│                                       │                              │
│                                       ▼                              │
│  PHASE 5: REPORT GENERATION                                          │
│  ──────────────────────────                                          │
│  ┌─────────────────────────────────────────────────────────────┐    │
│  │              VCP_Drug_Candidate_Report.pdf                   │    │
│  │   • Executive Summary        • Ranked Candidates             │    │
│  │   • Structure Analysis       • Scoring Details               │    │
│  │   • Binding Site Maps        • Next Steps                    │    │
│  └─────────────────────────────────────────────────────────────┘    │
│                                                                       │
└──────────────────────────────────────────────────────────────────────┘
### Drug-Likeness Criteria | Rule | Criteria | Purpose | |:-----|:---------|:--------| | **Lipinski Rule 1** | MW ≤ 500 Da | Oral bioavailability | | **Lipinski Rule 2** | LogP ≤ 5 | Membrane permeability | | **Lipinski Rule 3** | H-Bond Donors ≤ 5 | Absorption | | **Lipinski Rule 4** | H-Bond Acceptors ≤ 10 | Solubility | | **QED Score** | 0.0 - 1.0 | Overall drug-likeness | --- ## Infrastructure & Monitoring ### NVIDIA DGX Spark Specifications | Component | Specification | |:----------|:--------------| | **GPU** | NVIDIA GB10 (Blackwell) | | **GPU Memory** | 128 GB HBM3 | | **System RAM** | 512 GB DDR5 | | **CPU** | 144 Cores (ARM) | | **Storage** | 2+ TB NVMe | | **Network** | 100 GbE | ### Service Architecture | Port | Service | Status | |:----:|:--------|:------:| | 8080 | Landing Page | Active | | 5000 | Genomics Portal | Active | | 5001 | RAG/Chat API | Active | | 8501 | RAG Chat Interface | Active | | 8505 | Drug Discovery UI | Active | | 8510 | Discovery Portal | Active | | 19530 | Milvus Vector DB | Active | | 3000 | Grafana | Active | | 9099 | Prometheus | Active | | 9100 | Node Exporter | Active | | 9400 | DCGM Exporter | Active | ### Monitoring Dashboard
┌──────────────────────────────────────────────────────────────────────┐
│                    NVIDIA DGX SPARK GPU MONITORING                    │
├──────────────────────────────────────────────────────────────────────┤
│                                                                       │
│  ┌────────────────┐  ┌────────────────┐  ┌────────────────┐         │
│  │ GPU Utilization│  │ GPU Temperature│  │  GPU Power     │         │
│  │      85%       │  │     62°C       │  │    320W        │         │
│  │   ████████░░   │  │   ██████░░░░   │  │   ████████░░   │         │
│  └────────────────┘  └────────────────┘  └────────────────┘         │
│                                                                       │
│  ┌────────────────┐  ┌────────────────┐  ┌────────────────┐         │
│  │ CPU Utilization│  │Memory Bandwidth│  │ NVMe Throughput│         │
│  │      45%       │  │   450 GB/s     │  │   2.8 GB/s     │         │
│  │   ████░░░░░░   │  │   ███████░░░   │  │   ███████░░░   │         │
│  └────────────────┘  └────────────────┘  └────────────────┘         │
│                                                                       │
└──────────────────────────────────────────────────────────────────────┘
--- ## Platform Statistics Summary ### Codebase Metrics | Pipeline | Python | JavaScript | Shell | Markdown | CSS/HTML | Total | |:---------|-------:|----------:|------:|---------:|---------:|------:| | Genomics | 1,839 | 1,344 | 2,636 | 2,510 | 1,671 | **10,000** | | RAG/Chat | 9,409 | 716 | 349 | 1,797 | 975 | **13,321** | | Drug Discovery | 5,332 | - | 55 | 1,102 | 234 | **6,723** | | Landing Page | 400 | 750 | 100 | 450 | 708 | **2,408** | | Documentation | - | - | - | 3,540 | - | **3,540** | | **Total** | **16,980** | **2,810** | **3,140** | **9,399** | **3,588** | **~36,000** | ### Data Assets | Asset | Count | Source | |:------|------:|:-------| | Variant Embeddings | 3,500,000 | VCF + Annotations | | ClinVar Variants | 4,100,000 | NCBI ClinVar | | AlphaMissense Predictions | 71,000,000 | DeepMind | | Target Genes | 201 | Clinker Knowledge Base | | Disease Associations | 150+ | Curated Database | | Therapeutic Areas | 13 | Clinical Classification | | Druggable Targets | 171 | Druggability Analysis | --- ## Technology Stack ### Core Technologies | Layer | Technology | Purpose | |:------|:-----------|:--------| | **Compute** | NVIDIA DGX Spark | GPU-accelerated processing | | **Genomics** | NVIDIA Parabricks 4.6 | Variant calling pipeline | | **AI/ML** | NVIDIA BioNeMo NIM | Drug discovery models | | **LLM** | Claude (Anthropic) | Natural language reasoning | | **Vector DB** | Milvus | Similarity search | | **Embeddings** | BGE-small-en-v1.5 | Semantic encoding | | **Web** | Flask + Streamlit | User interfaces | | **Monitoring** | Grafana + Prometheus | System observability | | **Container** | Docker + NVIDIA Runtime | Service orchestration | ### AI Models | Model | Provider | Application | |:------|:---------|:------------| | DeepVariant | Google | Variant calling (>99% accuracy) | | BGE-small-en-v1.5 | BAAI | Semantic embeddings | | Claude Sonnet 4 | Anthropic | Evidence synthesis | | MolMIM | NVIDIA BioNeMo | Molecule generation | | DiffDock | NVIDIA BioNeMo | Molecular docking | | AlphaMissense | DeepMind | Pathogenicity prediction | --- ## Business Value ### Time Savings | Process | Traditional | AI Factory | Improvement | |:--------|------------:|-----------:|-----------:| | FASTQ to VCF | 24-48 hours | 120-240 min | **50x faster** | | Variant Interpretation | 2-4 weeks | Minutes | **1000x faster** | | Target Identification | 1-3 months | Hours | **100x faster** | | Lead Generation | 6-12 months | Hours | **1000x faster** | | **Total Pipeline** | 12-18 months | ~5 hours | **99% reduction** | ### Cost Efficiency | Factor | Impact | |:-------|:-------| | Compute Time Reduction | 50-100x lower GPU hours | | Manual Analysis Reduction | 90% fewer specialist hours | | Iteration Speed | 10x faster hypothesis testing | | Error Reduction | AI-validated annotations | --- ## Conclusion The **HCLS AI Factory** delivers a production-ready platform for precision medicine to drug discovery, demonstrating the transformative potential of GPU-accelerated computing and AI in healthcare. ### Key Differentiators - **End-to-End Integration**: Single platform from DNA to drug candidates - **GPU Acceleration**: NVIDIA Parabricks and BioNeMo for 10-100x speedups - **AI-Powered Insights**: Claude LLM for evidence synthesis - **Clinical Grounding**: 4.1M ClinVar variants with 71M AI predictions - **Production Ready**: 36,000+ lines of tested code ### Future Roadmap 1. **Multi-Patient Analysis**: Batch processing for cohort studies 2. **Clinical Trial Integration**: Real-world evidence incorporation 3. **Federated Learning**: Privacy-preserving model training 4. **Extended Targets**: Expansion beyond 201 genes 5. **Regulatory Compliance**: FDA/EMA submission support ---
**HCLS AI Factory** *Accelerating the Journey from Precision Medicine to Drug Discovery* --- Built on **NVIDIA DGX Spark** | **Parabricks 4.6** | **BioNeMo NIM** | **Milvus** Powered by **Claude AI** | **DeepVariant** | **AlphaMissense** --- **36,000+ Lines of Code | 3.5M Variants | 201 Targets | ~5 Hours End-to-End** --- *January 2026*
]]>