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1. Executive Summary 

The HCLS AI Factory follows a reusable pattern: identify a canonical artifact, build a persistent data model 
around it, and let agentic workflows operate continuously on that model. In genomics, the canonical artifact is 
the VCF — a structured record of every genomic variant identified in a patient’s DNA. 

This white paper describes an end-to-end platform that processes raw DNA sequencing data through GPU-
accelerated variant calling, RAG-grounded clinical reasoning, and AI-driven drug discovery — all on a single 
NVIDIA DGX Spark desktop workstation. 

The platform transforms patient FASTQ files (~200 GB of raw sequencing data from a 30× whole-genome 
study) into 100 ranked novel drug candidates in under 5 hours. Three stages execute sequentially: NVIDIA 
Parabricks performs GPU-accelerated alignment and variant calling (120-240 min), producing ~11.7 million 
variants. A RAG pipeline annotates variants with ClinVar, AlphaMissense, and VEP, indexes 3.5 million high-
quality variants in a Milvus vector database, and uses Anthropic Claude to identify druggable gene targets. 
Finally, BioNeMo NIM services (MolMIM and DiffDock) generate novel molecules, predict binding affinities, 
and rank candidates by a composite drug-likeness score. 

The architecture is designed to run end-to-end on a $3,999 DGX Spark for proof builds and scale to DGX 
SuperPOD for enterprise deployments. All components are open-source or NVIDIA-licensed, released under 
Apache 2.0 as part of the HCLS AI Factory. 

2. The Precision Medicine Data Challenge 

Precision medicine promises therapies tailored to an individual’s genetic profile. A single 30× whole-genome 
sequencing (WGS) run produces approximately 200 GB of raw data and 11.7 million genomic variants. The 
challenge is not generating this data — modern sequencers produce it reliably — but transforming it into 
actionable therapeutic hypotheses within a clinically relevant timeframe. 

The Limits of Traditional Bioinformatics 

Today’s genomic analysis pipelines assemble disconnected components: CPU-based alignment tools that take 
12-24 hours, separate variant callers, annotation databases accessed through web APIs, and manual literature 
review for target identification. 

This sequential, manual approach introduces three structural problems: 

Compute bottleneck.  CPU-based BWA-MEM alignment of a 30× WGS sample takes 12-24 hours on a 32-
core server. DeepVariant on CPU adds another 8-12 hours. The genomics stage alone consumes 1-2 days 
of wall time. 

Annotation fragmentation.  Clinical variant databases (ClinVar), AI pathogenicity predictors 
(AlphaMissense), and functional annotation tools (VEP) exist as separate resources requiring bespoke ETL 
pipelines. 

Target-to-drug gap.  Even after identifying a pathogenic variant in a druggable gene, the path to a lead 
compound requires separate molecular modeling tools and medicinal chemistry expertise — typically a 
months-long process. 



The GPU-Accelerated Opportunity 

NVIDIA DGX Spark collapses the compute bottleneck. Its GB10 GPU accelerates BWA-MEM2 alignment from 
hours to 20-45 minutes and DeepVariant variant calling from hours to 10-35 minutes — a 10-20× speedup. 
More importantly, the same GPU that runs genomics can run vector similarity search (Milvus), molecular 
generation (MolMIM), and molecular docking (DiffDock).  

 

3. Architecture Overview 

Three-Stage Pipeline 

Stage Technology Duration Input Output 

1 — Genomics Parabricks 4.6 120-240 min FASTQ (~200 GB) VCF (~11.7M variants) 

2 — RAG/Chat Milvus + BGE + Claude Interactive VCF Target gene + 
evidence 

3 — Drug Discovery MolMIM + DiffDock + 
RDKit 

8-16 min Target gene 100 ranked candidates 

 

Technology Stack 

Layer Components 

Compute NVIDIA DGX Spark (GB10 GPU, 128 GB unified, 144 ARM64 
cores) 

Genomics NVIDIA Parabricks 4.6.0-1, GRCh38 reference genome 

Annotation ClinVar (4.1M), AlphaMissense (71M), Ensembl VEP 

Vector DB Milvus 2.4, BGE-small-en-v1.5 (384-dim), IVF_FLAT 

LLM Anthropic Claude (claude-sonnet-4-20250514, temp=0.3) 

Drug Discovery BioNeMo MolMIM, BioNeMo DiffDock, RDKit 

Orchestration Nextflow DSL2, Docker Compose 

Monitoring Grafana, Prometheus, DCGM Exporter 

 

Service Architecture 

The platform runs 14 services across 14 ports, organized by stage: 

Orchestration:  Landing page (8080) with 10-service health monitor 
Stage 1:  Genomics portal (5000) 

Stage 2:  Milvus (19530), Attu UI (8000), RAG API (5001), Chat (8501) 

Stage 3:  MolMIM NIM (8001), DiffDock NIM (8002), Discovery UI (8505), Portal (8510) 

Monitoring:  Grafana (3000), Prometheus (9099), Node Exporter (9100), DCGM (9400) 



4. Stage 1 — GPU-Accelerated Genomics 

NVIDIA Parabricks 4.6 

Parabricks provides GPU-accelerated implementations of standard bioinformatics tools. On DGX Spark’s GB10 
GPU, it delivers 10-20× speedup over CPU implementations. 

BWA-MEM2 Alignment (fq2bam) 

Aligns paired-end reads against the GRCh38 reference genome. GPU-accelerated implementation achieves 
70-90% GPU utilization, producing a sorted BAM file with index in 20-45 minutes. 

Google DeepVariant 

A CNN-based variant caller achieving >99% accuracy on the GIAB truth set. GPU-accelerated implementation 
achieves 80-95% GPU utilization, calling variants in 10-35 minutes. The deep learning approach outperforms 
traditional statistical callers (GATK HaplotypeCaller) on both SNPs and indels. 

Input: HG002 Reference Standard 

Parameter Value 

Sample HG002 (NA24385, GIAB reference standard) 

Coverage 30× whole-genome sequencing (WGS) 

Read Length 2×250 bp paired-end 

File Size ~200 GB (FASTQ pair) 

Reference GRCh38 (3.1 GB, pre-indexed) 

 

Output: Variant Call Format (VCF) 

Metric Count 

Total Variants ~11.7M 

High-Quality (QUAL>30) ~3.5M 

SNPs ~4.2M 

Indels ~1.0M 

Coding Region ~35,000 

Multi-allelic Sites ~150,000 

  



5. Stage 2 — RAG-Grounded Target Identification 

Variant Annotation 

Stage 2 begins by annotating the 3.5 million high-quality variants with three complementary databases: 

ClinVar (NCBI) 

4.1 million clinical variant records mapping genomic positions to clinical significance classifications 
(Pathogenic, Likely pathogenic, VUS, Likely benign, Benign). Approximately 35,616 patient variants match 
ClinVar entries. 

AlphaMissense (DeepMind) 

71,697,560 AI-predicted pathogenicity scores for missense variants, derived from AlphaFold protein structure 
features. Thresholds: pathogenic >0.564, ambiguous 0.34-0.564, benign <0.34. Approximately 6,831 ClinVar-
matched variants have AlphaMissense predictions. 

Ensembl VEP 

Functional consequence annotation mapping variants to genes, transcripts, and impact levels (HIGH, 
MODERATE, LOW, MODIFIER). Identifies missense variants, stop gains, frameshift variants, and splice site 
disruptions. 

Vector Embedding and Indexing 

Each annotated variant is transformed into a text summary and embedded using BGE-small-en-v1.5 (384 
dimensions). The 3.5 million embeddings are indexed in Milvus 2.4 using IVF_FLAT (nlist=1024, COSINE metric) 
with 17 structured fields per record. 

RAG-Grounded Reasoning with Claude 

User queries are expanded using 10 therapeutic area keyword maps, embedded, and used for approximate 
nearest-neighbor search in Milvus (top_k=20). Retrieved variant contexts are assembled into a RAG prompt 
and processed by Anthropic Claude (claude-sonnet-4-20250514, temperature=0.3). Claude generates 
structured target hypotheses: gene name, confidence level, evidence chain, therapeutic area, and 
recommended action. 

Knowledge Base: 201 Genes, 13 Therapeutic Areas 

Therapeutic Area Genes Examples 

Neurology 36 VCP, APP, PSEN1, MAPT, SOD1 

Oncology 27 EGFR, BRAF, KRAS, TP53, BRCA1 

Metabolic 22 GCK, PPARG, SLC2A2, PCSK9 

Infectious Disease 21 ACE2, CCR5, IFITM3, TLR4 

Respiratory 13 CFTR, SERPINA1, MUC5B 



Rare Disease 12 VCP, HTT, SMN1, DMD 

Hematology 12 HBB, HBA1, F5, JAK2 

GI/Hepatology 12 HFE, ATP7B, NOD2 

Pharmacogenomics 11 CYP2D6, CYP2C19, CYP3A4 

Ophthalmology 11 RHO, RPE65, RS1, ABCA4 

Cardiovascular 10 LDLR, PCSK9, SCN5A 

Immunology 9 HLA-B, TNF, IL6, JAK1 

Dermatology 9 FLG, MC1R, TYR, KRT14 
 

Total: 201 genes, 171 druggable targets (85% druggability). 

 

6. Stage 3 — AI-Driven Drug Discovery 

10-Stage Drug Discovery Pipeline 

Stage Process Description 

1 Initialize Load target hypothesis, validate inputs 

2 Normalize Target Map gene → UniProt ID → PDB 
structures 

3 Structure Discovery Query RCSB PDB for structures 

4 Structure Prep Score by resolution, inhibitor, pockets 

5 Molecule Generation MolMIM generates novel SMILES from 
seed 

6 Chemistry QC RDKit validates chemical feasibility 

7 Conformers RDKit 3D conformer embedding 
(ETKDG) 

8 Docking DiffDock predicts binding poses and 
affinities 

9 Ranking 30% gen + 40% dock + 30% QED 
composite 

10 Reporting PDF report via ReportLab 

 

BioNeMo NIM Services 

MolMIM (Port 8001) 

A masked language model for molecular generation. Given a seed compound’s SMILES string, it generates 
structurally novel analogs by masking and regenerating molecular tokens. Container: 
nvcr.io/nvidia/clara/bionemo-molmim:1.0 



DiffDock (Port 8002) 

A score-based generative diffusion model for molecular docking. It predicts the 3D binding pose and affinity of 
a ligand in a protein binding site without requiring pre-defined binding pockets. Container: 
nvcr.io/nvidia/clara/diffdock:1.0 

Drug-Likeness Scoring 

Each candidate is evaluated against Lipinski’s Rule of Five (MW≤500, LogP≤5, HBD≤5, HBA≤10), QED (>0.67 = 
drug-like), and TPSA (<140 Å² for oral bioavailability). 

Composite Scoring Formula 

The final ranking uses a weighted composite: 30% MolMIM generation confidence, 40% DiffDock binding 
affinity (normalized: max(0, min(1, (10 + dock_score) / 20))), and 30% QED score. This balances novelty, 
binding prediction, and drug-likeness. 

 

7. VCP/FTD Demonstration 

Target: Valosin-Containing Protein (VCP/p97) 

The platform ships with a pre-configured demonstration targeting VCP — a AAA+ ATPase involved in the 
ubiquitin-proteasome pathway. Pathogenic VCP mutations cause Frontotemporal Dementia (FTD), ALS, and 
IBMPFD. 

Parameter Value 

Gene VCP (UniProt P55072) 

Variant rs188935092 (chr9:35065263 G>A) 

ClinVar Pathogenic 

AlphaMissense 0.87 (pathogenic, >0.564 threshold) 

Seed Compound CB-5083 (Phase I clinical VCP inhibitor) 

PDB Structures 8OOI, 9DIL, 7K56, 5FTK 

Binding Site D2 ATPase domain (~450 Å³, druggability 0.92) 
 

Demo Results 

The VCP/FTD demo produces 100 novel VCP inhibitor candidates. Typical results: 87 pass Lipinski’s Rule of 
Five, 72 have QED >0.67, top 10 show docking scores from -8.2 to -11.4 kcal/mol, with composite scores 
ranging 0.68-0.89. 



8. Cryo-EM Structure Evidence 

Automated Structure Retrieval and Scoring 

The drug discovery pipeline automatically queries RCSB PDB for protein structures and scores them by 
resolution, inhibitor presence (+3 bonus), druggable pocket count (+0.5 each), and experimental method 
(Cryo-EM +0.5). 

PDB Resolution Method Key Feature 

5FTK 2.3 Å X-ray CB-5083 inhibitor-bound 
(highest score) 

7K56 2.5 Å Cryo-EM VCP complex 

8OOI 2.9 Å Cryo-EM WT VCP hexamer 

9DIL 3.2 Å Cryo-EM Mutant VCP 
 

The inhibitor-bound structure (5FTK) is preferred because it provides a pre-defined binding site and a 
reference ligand for molecular generation. 

 

9. Orchestration and Monitoring 

Nextflow DSL2 Orchestration 

The pipeline is orchestrated by Nextflow DSL2, supporting five modes: 

full:  End-to-end (Stages 1→2→3) 

target:  From existing VCF (Stages 2→3) 

drug:  Known target to drug candidates (Stage 3 only) 

demo:  Pre-configured VCP/FTD demonstration 
genomics_only:  Variant calling only (Stage 1) 

Six execution profiles (standard, docker, singularity, dgx_spark, slurm, test) adapt the pipeline to different 
infrastructure. 

Monitoring Stack 

Grafana dashboards (port 3000) visualize GPU utilization, memory pressure, pipeline progress, and service 
health. Prometheus (port 9099) collects metrics from DCGM Exporter (port 9400) for GPU telemetry and 
Node Exporter (port 9100) for system resources. The landing page (port 8080) provides a 10-service health 
grid with real-time status indicators. 



10. Cross-Modal Integration 

Imaging Intelligence Agent Integration 

The HCLS AI Factory ecosystem includes an Imaging Intelligence Agent for CT, MRI, and X-ray analysis. Cross-
modal triggers connect imaging findings to genomic analysis: 

Imaging → Genomics:  Lung-RADS 4B+ triggers FHIR ServiceRequest for tumor profiling 

Genomics → Drug Discovery:  Pathogenic variants trigger targeted molecule generation 

Drug Discovery → Imaging:  Candidates combined with imaging in clinical reports 

NVIDIA FLARE for Federated Learning 

Phase 3 deployments use NVIDIA FLARE for federated learning across institutions. Models train locally; only 
gradient updates are shared. Patient genomic data never leaves the originating institution. 

 

11. Deployment Roadmap 

Three-Phase Scaling 

Phase Hardware Orchestration Scale 

1 — Proof Build DGX Spark ($3,999) Docker Compose Single patient, sequential 

2 — Departmental 1-2× DGX B200 Kubernetes Multiple concurrent patients 

3 — Enterprise DGX SuperPOD K8s + FLARE Thousands concurrent, 
federated 

 

Phase 1: DGX Spark Proof Build 

A single DGX Spark runs the complete pipeline: GB10 GPU handles Parabricks, Milvus, MolMIM, and DiffDock 
sequentially. Docker Compose manages all 14 services. The 128 GB unified memory accommodates all stages. 
Total cost: $3,999 hardware + API keys (Anthropic, NGC). 

Phase 2: Departmental Scale 

DGX B200 systems (8× B200 GPUs, 1-2 TB HBM3e) enable parallel processing of multiple patients, GPU-
dedicated Milvus instances, and multiple BioNeMo NIM replicas. Kubernetes replaces Docker Compose. 

Phase 3: Enterprise / Multi-Site 

DGX SuperPOD with InfiniBand fabric, NVIDIA FLARE for federated learning, and institutional-scale variant 
databases. Thousands of patients processed concurrently with cross-institutional collaboration while 
maintaining data sovereignty. 



12. Conclusion 

The HCLS AI Factory demonstrates that the full precision medicine pipeline — from raw DNA to novel drug 
candidates — can run on a single desktop workstation. GPU acceleration collapses genomics from days to 
hours. Vector databases and LLM reasoning transform annotation from manual curation to interactive 
exploration. Generative chemistry and molecular docking automate the target-to-lead transition that 
traditionally takes months. 

The three-stage architecture (Genomics → RAG/Chat → Drug Discovery) provides a reproducible, auditable, 
and scalable framework. The same Nextflow pipelines that run on a $3,999 DGX Spark scale to DGX SuperPOD 
for enterprise deployments. All components are open-source or NVIDIA-licensed under Apache 2.0. 

This is precision medicine as a continuous, computable workflow — not a disconnected collection of tools, but 
an integrated factory that transforms patient data into therapeutic hypotheses in a single session. 
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