Open-Source Project

Intermediate-Advanced Learning Guide

HCLS Al Factory

Professional Level

Deep technical analysis of the HCLS Al Factory architecture, from BWA-MEM2 seed-and-extend
algorithms through diffusion-based molecular docking, with emphasis on algorithmic design
decisions, scaling bottlenecks, and clinical translation barriers.

NVIDIA DGX Spark | Parabricks | BioNeMo

02/2026 | Version 1.0 | Apache 2.0 License

Author: Adam Jones

Table of Contents

Computational Genomics — From FASTQ to VCF
Variant Annotation — Multi-Database Integration
Vector Database Architecture — Milvus and RAG
Drug Discovery Pipeline — Deep Dive

Nextflow DSL2 Pipeline Architecture

Clinical Translation and Limitations

Scaling Analysis

© N o U A~ W N

Advanced Topics and Extensions

Review Questions

Chapter 1: Computational Genomics — From
FASTQ to VCF

1.1 Sequencing Data Characteristics

The HCLS Al Factory processes Illumina short-read data: 2x250 bp paired-end reads from 30x whole-genome
sequencing of HG002 (NA24385), a GIAB Ashkenazi Jewish reference standard. The FASTQ files total
approximately 200 GB and contain ~800 million read pairs.

Why HG002?

The Genome in a Bottle (GIAB) Consortium provides extensively validated truth sets for HG002, enabling
rigorous benchmarking. The high-confidence regions cover >95% of the GRCh38 reference, with variant calls
validated by multiple orthogonal technologies (PacBio HiFi, Oxford Nanopore, Hi-C, optical mapping).

1.2 GPU-Accelerated Alignment: BWA-MEM2 on Parabricks

NVIDIA Parabricks 4.6.0-1 (container: nvcr.io/nvidia/clara/clara-parabricks:4.6.0-1) provides a GPU-
accelerated implementation of BWA-MEM?2.

Algorithm Overview
BWA-MEM?2 uses a seed-and-extend approach:

1. Seeding: Extract fixed-length k-mers from the query read and look them up in the FM-index of the
reference genome

2. Chaining: Group collinear seeds into chains representing candidate alignment locations

3. Extension: Perform Smith-Waterman local alignment around each chain to produce the final
alignment

4. Scoring: Select the best alignment and assign a MAPQ (mapping quality) score

GPU Acceleration Strategy

Parabricks parallelizes the computationally intensive Smith-Waterman extension step across GPU cores. The
FM-index lookup (seeding) remains CPU-bound but constitutes a small fraction of total compute. The fg2bam
command also integrates coordinate sorting and duplicate marking, eliminating separate samtools sort and
picard MarkDuplicates steps.

Performance on DGX Spark (GB10)

Metric Value

Wall time 120-240 minutes

GPU utilization 70-90%

Peak memory ~40 GB (of 128 GB unified)
Output Sorted BAM + BAl index

Mapping rate >99.5%

Duplicate rate ~8-12%

1.3 Deep Learning Variant Calling: DeepVariant

Google DeepVariant reframes variant calling as an image classification problem. For each candidate variant
site, it constructs a pileup image — a visual representation of aligned reads at that position — and classifies it
using a convolutional neural network (CNN).

Architecture Details

Input: Pileup image (channels: read bases, base qualities, mapping qualities, strand, etc.)
Network: Inception-v3 CNN architecture
Output: Three-class softmax (homozygous reference, heterozygous variant, homozygous variant)

Training: Supervised on GIAB truth sets, with data augmentation and hard example mining

Why DeepVariant Outperforms GATK HaplotypeCaller

1. The CNN learns complex error patterns that statistical models cannot capture
2. No explicit error model required — the network learns directly from data

3. Better performance on indels and complex variants
q

. Transferable across sequencing platforms (lllumina, PacBio, ONT)

Performance
Wall time 10-35 minutes (GPU-accelerated via Parabricks)
GPU utilization 80-95%
Peak memory ~60 GB
SNP F1 >99.7% on HG002
Indel F1 >99.4% on HG002
Total variants ~11.7M (unfiltered)
QUAL>30 variants ~3.5M

1.4 VCF Quality Metrics

Metric Expected Range ‘ Interpretation
Ti/Tv ratio 2.0-2.1 Transition/transversion ratio; deviation
suggests systematic error

Het/Hom ratio 1.5-2.0 Heterozygous/homozygous ratio;
population-dependent

SNP count ~4.2M Consistent with Ashkenazi ancestry
Indel count ~1.0M Normal range for WGS

Novel variant rate <5% Variants not in dbSNP; higher rates

suggest error

Chapter 2: Variant Annotation — Multi-Database
Integration

2.1 ClinVar: Clinical Variant Classification

Clinvar (NCBI) is a freely accessible archive of relationships between human variants and phenotypes. The
HCLS Al Factory integrates the February 2026 release containing 4.1 million variant-condition records.

Classification System (ACMG/AMP)

Pathogenic (P) — Strong evidence of disease causation

Likely Pathogenic (LP) — Moderate evidence

Variant of Uncertain Significance (VUS) — Insufficient evidence
Likely Benign (LB) — Moderate evidence against pathogenicity

Benign (B) — Strong evidence against pathogenicity

Review Status Tiers

ClinVar classifies assertion confidence using star ratings (0-4 stars). The pipeline weights variants with >2 stars
(multiple submitters with concordant interpretations) more heavily.

Annotation Performance

Of ~3.5M QUAL>30 variants, approximately 35,616 (1.0%) match ClinVar entries. The low match rate reflects
that most variants in a healthy individual are common polymorphisms not represented in a clinical database
focused on rare disease.

2.2 AlphaMissense: Al Pathogenicity Prediction

AlphaMissense (Cheng et al., Science 2023) predicts the pathogenicity of all possible human missense variants
using features derived from AlphaFold protein structure predictions and evolutionary conservation.

Model Architecture

Input features: amino acid sequence context, evolutionary conservation (from MSA), and structural
features from AlphaFold
Output: pathogenicity score (0-1, continuous)

Total predictions: 71,697,560 unique missense variants

Calibrated Thresholds

Pathogenic: >0.564 (90% precision on ClinVar pathogenic set)
Ambiguous: 0.34-0.564

Benign: <0.34 (90% precision on ClinVar benign set)

Critical Limitation

AlphaMissense only predicts missense variant effects. Stop-gain, frameshift, splice site, and non-coding
variants require other prediction tools. The pipeline uses VEP for functional consequence annotation to
complement AlphaMissense.

2.3 Ensembl VEP: Functional Consequence Prediction

The Variant Effect Predictor maps variants to genes, transcripts, and regulatory regions, annotating each with
standardized Sequence Ontology (SO) terms.

Impact Classification

Impact Level Example Consequences ‘ Typical Action

HIGH stop_gained, frameshift_variant, Likely loss of function
splice_donor_variant

MODERATE missense_variant, inframe_deletion Protein function may change

LOW synonymous_variant, Unlikely to affect protein
splice_region_variant

MODIFIER intron_variant, upstream_gene_variant Non-coding effects

2.4 The Annotation Pipeline Architecture

The three annotation databases are applied sequentially in annotator.py (23 KB):

Annotation Pipeline Flow

VCF (11.7M variants)
parse_vcf(min_qual=30) -» 3.5M variants
annotate_clinvar() -» Clinical significance
annotate_alphamissense() AI pathogenicity scores
annotate_vep() Functional consequences
generate_text_summary() Natural language descriptions
embed_variants() 384-dim BGE embeddings
index_in_milvus() Searchable vector database

2R 2R 20K 2R 2 2
[2 2 2

Chapter 3: Vector Database Architecture — Milvus
and RAG

3.1 Milvus Schema Design

The genomic_evidence collection in Milvus 2.4 uses a 17-field schema designed to support both vector
similarity search and scalar filtering:

Field Type ‘ LELE]

id INT64 (PK, auto) Milvus-managed primary key
embedding FLOAT_VECTOR(384) Semantic search vector

chrom VARCHAR(10) Genomic coordinate filtering

pos INT64 Positional queries

ref/alt VARCHAR(1000) Allele matching

qual FLOAT Quality score filtering

gene VARCHAR(100) Gene-level queries

consequence VARCHAR(200) Functional filtering (e.g., missense only)
impact VARCHAR(20) Impact level filtering

genotype VARCHAR(10) Zygosity queries

text_summary VARCHAR(2000) Human-readable context for RAG
clinical_significance VARCHAR(200) ClinVar classification

rsid VARCHAR(20) dbSNP lookup
disease_associations VARCHAR(2000) Disease context for RAG
am_pathogenicity FLOAT AlphaMissense score filtering
am_class VARCHAR(20) Pathogenicity class filtering

3.2 Index Configuration and Performance

Index Type: IVF_FLAT (Inverted File with Flat Vectors)
Why IVF_FLAT? At 3.5M vectors with 384 dimensions, IVF_FLAT provides the best recall-latency tradeoff.
HNSW would use more memory; IVF_PQ would sacrifice recall.

nlist=1024: Partitions vectors into 1024 clusters. Query searches ~16 clusters (nprobe=16), examining
~55K vectors per query.

Metric: COSINE similarity (normalized dot product)

Search Performance

Metric Value

Index build time ~8 minutes (3.5M x 384-dim)
Index memory ~2 GB

Search latency (nprobe=16) 8-15 ms

Recall@20 >95%

3.3 RAG Architecture with Claude

The RAG pipeline in rag_engine.py (23 KB) implements a multi-stage retrieval strategy:

1. Query Expansion

User queries are enriched using 10 therapeutic area keyword maps. For example, a query about
"neurodegeneration" is expanded with terms like "frontotemporal dementia," "ALS," "motor neuron," "tau
protein."

2. Hybrid Retrieval

The expanded query is embedded and used for vector search (top_k=20). Results are optionally filtered by
scalar fields (e.g., impact=HIGH, am_class=pathogenic).

3. Context Assembly

Retrieved variants are formatted into structured context:

Context Template

Variant Evidence

- chr9:35065263 G>A | Gene: VCP | Consequence: missense_variant
Clinvar: Pathogenic | AlphaMissense: ©.87 (pathogenic)
Disease: Frontotemporal Dementia, ALS, IBMPFD

4, Claude Inference

The assembled context + knowledge base + user query are sent to claude-sonnet-4-20250514
(temperature=0.3, max_tokens=4096).

Why temperature=0.3?

Lower temperature produces more deterministic, factual responses. For clinical genomics, hallucination is
dangerous — the model should report only what the evidence supports.

Chapter 4: Drug Discovery Pipeline — Deep Dive

4.1 The 10-Stage Architecture

The drug discovery pipeline in pipeline.py (18 KB) implements a sequential 10-stage workflow:

Stage Module ‘ Key Algorithm
1. Initialize pipeline.py Pydantic model validation
2. Normalize Target pipeline.py Gene - UniProt - PDB mapping
3. Structure Discovery cryoem_evidence.py RCSB PDB REST API query
4. Structure Preparation cryoem_evidence.py Multi-factor scoring
5. Molecule Generation nim_clients.py MolIMIM masked LM inference
6. Chemistry QC molecule_generator.py RDKit valence/kekulization
7. Conformer Generation molecule_generator.py RDKit ETKDG algorithm
8. Molecular Docking nim_clients.py DiffDock diffusion inference
9. Composite Ranking pipeline.py Weighted multi-objective

10. Reporting pipeline.py ReportLab PDF generation

4.2 Cryo-EM Structure Scoring

The cryoem_evidence.py (6 KB) module implements a multi-factor structure scoring algorithm:

Python
score += max(@, 5.0 - resolution) # Resolution: ©-5 scale
if has_inhibitor_bound: score += 3.0 # Binding site defined
score += num_druggable_pockets * 0.5 # Pocket count bonus
if 'Cryo-EM' in method: score += 0.5 # Method bonus

Design Rationale
Resolution: the primary factor (0-5 scale). The 5 A cutoff excludes low-resolution structures unsuitable
for docking.

Inhibitor bonus (+3): Inhibitor-bound structures provide a pre-defined binding site and reference ligand
geometry.

Pocket count (+0.5 each): More druggable pockets increase therapeutic options.

Cryo-EM bonus (+0.5): Reflects the growing prevalence and quality of Cryo-EM structures for drug
targets.

4.3 MolMIM: Molecular Masked Inverse Modeling

MolMIM applies masked language modeling (the technique behind BERT in NLP) to molecular SMILES strings.
Given a seed molecule, it:

. Tokenizes the SMILES into a vocabulary of molecular substructures
. Randomly masks 15-30% of tokens

. Predicts the masked tokens using a transformer architecture

A W N =

. The predicted tokens create novel molecular structures

Critical Considerations

SMILES output: MolMIM generates SMILES strings, not 3D structures. Chemical validity must be verified
by RDKit.
Stochastic generation: Different random seeds produce different molecules.

Temperature control: Higher temperature = more diverse but potentially less valid molecules.

4.4 DiffDock: Diffusion-Based Molecular Docking

DiffDock (Corso et al., ICLR 2023) models molecular docking as a generative diffusion process over the product
space of rotations, translations, and torsion angles.

Key Innovation

Unlike grid-based docking methods (AutoDock Vina, Glide), DiffDock does not require a pre-defined search
box around a binding site. It learns to predict binding poses directly from protein-ligand pairs, making it
suitable for blind docking.

Score Interpretation

Confidence score (0-1): indicates the model's certainty about the predicted pose

Binding affinity (kcal/mol): estimates the free energy of binding; more negative = stronger binding

Limitations
Training bias: DiffDock was trained primarily on crystal structures; performance may degrade on Cryo-
EM structures with lower resolution
No kinetics: The model predicts pose and affinity but not binding kinetics (on/off rates)

Rigid protein: Protein flexibility is not modeled — the protein is treated as rigid

4.5 Composite Scoring and Normalization

The composite scoring formula balances three objectives:

Python

dock_normalized = max(0.0, min(1.0, (10.0 + dock_score) / 20.0))
composite = ©.30 * gen_score + 0.40 * dock_normalized + ©.30 * ged_score

Normalization Rationale
Docking scores: range from ~-15 to ~0 kcal/mol. The formula (10 + dock) / 20 maps this to approximately
0-1, with -10 kcal/mol mapping to 0.0 and +10 mapping to 1.0.
Generation scores: already 0-1 (MolMIM confidence).

QED scores: inherently 0-1.

Weight Rationale
Docking (40%): receives the highest weight because binding affinity is the most direct predictor of
therapeutic activity
Generation (30%): balances novelty of the molecular design

QED (30%): balances practical drug-likeness

Chapter 5: Nextflow DSL2 Pipeline Architecture

5.1 Module Design

The pipeline uses Nextflow DSL2's module system for composable workflow design:

Directory Structure
hls-orchestrator/
main.nf # Entry point, mode routing
nextflow.config Profiles, parameters
run_pipeline.py Python CLI launcher
modules/

genomics.nf
rag_chat.nf
drug_discovery.nf

reporting.nf

H H

Stage 1 processes
Stage 2 processes
Stage 3 processes
Report generation

H HHH

5.2 Execution Modes and Data Flow

Mode Data Flow ‘ Use Case
full FASTQ - VCF - Target - Candidates Complete pipeline
target VCF - Target - Candidates Pre-existing VCF
drug Target - Candidates Known gene target
demo Pre-configured FASTQ - Candidates VCP/FTD demonstration
genomics_only FASTQ - VCF Variant calling only

5.3 Profile Configuration

The nextflow.config defines six execution profiles optimized for different environments:

dgx_spark: GPU resource requests, memory limits tuned for 128 GB unified memory
docker: Docker container execution with GPU passthrough
singularity: Singularity containers for HPC environments without Docker

slurm: SLURM scheduler integration for cluster execution

Chapter 6: Clinical Translation and Limitations

6.1 From Computational Hits to Drug Leads

The HCLS Al Factory generates computational drug candidates — not approved medications. The path from
computational hit to clinical drug requires:

1. In vitro validation: Test top candidates in biochemical assays (e.g., VCP ATPase activity inhibition)
2. Cell-based assays: Confirm activity in relevant cell lines

3. ADMET profiling: Absorption, Distribution, Metabolism, Excretion, and Toxicity studies

4. Lead optimization: lterative cycles of design, synthesis, and testing

5. Preclinical studies: Animal models for efficacy and safety

6. Clinical trials: Phase | (safety), Phase Il (efficacy), Phase Il (large-scale)

Estimated Timeline

10-15 years from computational hit to approved drug. The HCLS Al Factory accelerates the earliest stage —
computational lead generation — from months to minutes.

6.2 Limitations and Caveats

Genomics

e DeepVariant accuracy varies by variant type (SNPs > indels > structural variants)

e Short-read WGS has limited sensitivity for structural variants and repeat expansions

e Population-specific biases in GRCh38 may affect variant calling in non-European ancestries

RAG/Annotation

e ClinVar has known biases toward well-studied genes and European ancestry variants
e AlphaMissense is limited to missense variants; non-coding variants are not scored

e The 201-gene knowledge base covers common drug targets but not the full druggable genome

Drug Discovery

e MolMIM-generated molecules have not been synthesized or tested
e DiffDock docking scores are predictions, not experimental measurements
e Protein flexibility is not modeled; induced-fit effects are ignored

e The composite scoring weights (30/40/30) are heuristic, not optimized on clinical outcomes

6.3 Ethical Considerations

Informed consent: Patient genomic data requires explicit consent for research use

Data sovereignty: NVIDIA FLARE federated learning keeps data local; essential for HIPAA/GDPR
compliance

Return of results: Incidental findings (e.g., BRCA1 pathogenic variants) may require clinical reporting

Equity: Pipeline performance should be validated across diverse ancestries to avoid exacerbating health
disparities

Chapter 7: Scaling Analysis

7.1 DGX Spark Bottleneck Analysis

Component Bottleneck ‘ Phase 1 Impact
Parabricks (fq2bam) GPU compute 20-45 min, acceptable
DeepVariant GPU memory (60 GB peak) Leaves 68 GB for other tasks
Milvus indexing CPU +1/0 24 min for 3.5M vectors
MolMIM inference GPU compute 2 min for 100 molecules
DiffDock inference GPU compute + memory 8 min for 98 candidates

Sequential total GPU time-sharing ~4 hours end-to-end

7.2 Phase 2: DGX B200 Scaling

With 8x B200 GPUs and 1-2 TB HBM3e:

Parallel Parabricks: 4-8 simultaneous samples

Dedicated Milvus GPU: GPU-accelerated vector search (sub-millisecond)

NIM replicas: 2-4 MolMIM + 2-4 DiffDock instances
Estimated throughput: 10-20 patients per day

7.3 Phase 3: DGX SuperPOD

Hundreds of B200 GPUs with NVLink and InfiniBand

Distributed Milvus cluster: Billions of variants across institutions

NVIDIA FLARE: Federated model training without data sharing
Estimated throughput: Thousands of patients per day

Chapter 8: Advanced Topics and Extensions

8.1 Alternative Embedding Strategies

BGE-small-en-v1.5 (384-dim) was chosen for its balance of quality and efficiency. Alternatives:

Model Dimensions Size
BGE-small-en-v1.5 384 33M params
BGE-base-en-v1.5 768 109M params
BGE-large-en-v1.5 1024 335M params
BiomedBERT 768 109M params
PubMedBERT 768 109M params

8.2 Multi-Objective Optimization

Trade-off

Current choice: fast, efficient
Better recall, 2x memory
Best recall, 3x memory

Domain-specific, biomedical
text

PubMed-trained, clinical text

The current composite scoring uses fixed weights (30/40/30). Advanced approaches:

Pareto optimization: Identify the Pareto frontier of generation, docking, and QED

Bayesian optimization: Learn optimal weights from experimental feedback

Active learning: Prioritize candidates that reduce uncertainty in the scoring model

8.3 Long-Read Sequencing Integration

Oxford Nanopore and PacBio long-read technologies can detect structural variants (SVs) and repeat
expansions that short-read WGS misses. Future extensions could:

e Add ONT/PacBio alignment with minimap2
e Detect SVs with Sniffles2 or PEPPER-Margin-DeepVariant

e Phase haplotypes for compound heterozygosity detection

8.4 Pharmacogenomics Integration

The knowledge base includes 11 pharmacogenomics genes (CYP2D6, CYP2C19, CYP3A4, DPYD, TPMT, etc.).
Future extensions could:

e Star allele calling with PharmCAT
e Drug-drug interaction prediction

e Dosing recommendations based on metabolizer status

HCLS Al Factory Learning Guide: Advanced — Apache 2.0 | Author: Adam Jones | February 2026

