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Chapter 1: Computational Genomics — From 
FASTQ to VCF 

1.1 Sequencing Data Characteristics 

The HCLS AI Factory processes Illumina short-read data: 2×250 bp paired-end reads from 30× whole-genome 
sequencing of HG002 (NA24385), a GIAB Ashkenazi Jewish reference standard. The FASTQ files total 
approximately 200 GB and contain ~800 million read pairs. 

Why HG002? 

The Genome in a Bottle (GIAB) Consortium provides extensively validated truth sets for HG002, enabling 
rigorous benchmarking. The high-confidence regions cover >95% of the GRCh38 reference, with variant calls 
validated by multiple orthogonal technologies (PacBio HiFi, Oxford Nanopore, Hi-C, optical mapping). 

1.2 GPU-Accelerated Alignment: BWA-MEM2 on Parabricks 

NVIDIA Parabricks 4.6.0-1 (container: nvcr.io/nvidia/clara/clara-parabricks:4.6.0-1) provides a GPU-
accelerated implementation of BWA-MEM2. 

Algorithm Overview 

BWA-MEM2 uses a seed-and-extend approach: 

1. Seeding:  Extract fixed-length k-mers from the query read and look them up in the FM-index of the 
reference genome 

2. Chaining:  Group collinear seeds into chains representing candidate alignment locations 

3. Extension:  Perform Smith-Waterman local alignment around each chain to produce the final 
alignment 

4. Scoring:  Select the best alignment and assign a MAPQ (mapping quality) score 

GPU Acceleration Strategy 

Parabricks parallelizes the computationally intensive Smith-Waterman extension step across GPU cores. The 
FM-index lookup (seeding) remains CPU-bound but constitutes a small fraction of total compute. The fq2bam 
command also integrates coordinate sorting and duplicate marking, eliminating separate samtools sort and 
picard MarkDuplicates steps. 

Performance on DGX Spark (GB10) 

Metric Value 

Wall time 120-240 minutes 

GPU utilization 70-90% 

Peak memory ~40 GB (of 128 GB unified) 

Output Sorted BAM + BAI index 

Mapping rate >99.5% 



Duplicate rate ~8-12% 

 

1.3 Deep Learning Variant Calling: DeepVariant 

Google DeepVariant reframes variant calling as an image classification problem. For each candidate variant 
site, it constructs a pileup image — a visual representation of aligned reads at that position — and classifies it 
using a convolutional neural network (CNN). 

Architecture Details 

Input:  Pileup image (channels: read bases, base qualities, mapping qualities, strand, etc.) 

Network:  Inception-v3 CNN architecture 

Output:  Three-class softmax (homozygous reference, heterozygous variant, homozygous variant) 
Training:  Supervised on GIAB truth sets, with data augmentation and hard example mining 

Why DeepVariant Outperforms GATK HaplotypeCaller 

1.  The CNN learns complex error patterns that statistical models cannot capture 

2.  No explicit error model required — the network learns directly from data 

3.  Better performance on indels and complex variants 
4.  Transferable across sequencing platforms (Illumina, PacBio, ONT) 

Performance 

Metric Value 

Wall time 10-35 minutes (GPU-accelerated via Parabricks) 

GPU utilization 80-95% 

Peak memory ~60 GB 

SNP F1 >99.7% on HG002 

Indel F1 >99.4% on HG002 

Total variants ~11.7M (unfiltered) 

QUAL>30 variants ~3.5M 

 

1.4 VCF Quality Metrics 

Metric Expected Range Interpretation 

Ti/Tv ratio 2.0-2.1 Transition/transversion ratio; deviation 
suggests systematic error 

Het/Hom ratio 1.5-2.0 Heterozygous/homozygous ratio; 
population-dependent 

SNP count ~4.2M Consistent with Ashkenazi ancestry 

Indel count ~1.0M Normal range for WGS 

Novel variant rate <5% Variants not in dbSNP; higher rates 



suggest error 
 

 

Chapter 2: Variant Annotation — Multi-Database 
Integration 

2.1 ClinVar: Clinical Variant Classification 

ClinVar (NCBI) is a freely accessible archive of relationships between human variants and phenotypes. The 
HCLS AI Factory integrates the February 2026 release containing 4.1 million variant-condition records. 

Classification System (ACMG/AMP) 

Pathogenic (P) —  Strong evidence of disease causation 

Likely Pathogenic (LP) —  Moderate evidence 

Variant of Uncertain Significance (VUS) —  Insufficient evidence 
Likely Benign (LB) —  Moderate evidence against pathogenicity 

Benign (B) —  Strong evidence against pathogenicity 

Review Status Tiers 

ClinVar classifies assertion confidence using star ratings (0-4 stars). The pipeline weights variants with ≥2 stars 
(multiple submitters with concordant interpretations) more heavily. 

Annotation Performance 

Of ~3.5M QUAL>30 variants, approximately 35,616 (1.0%) match ClinVar entries. The low match rate reflects 
that most variants in a healthy individual are common polymorphisms not represented in a clinical database 
focused on rare disease. 

2.2 AlphaMissense: AI Pathogenicity Prediction 

AlphaMissense (Cheng et al., Science 2023) predicts the pathogenicity of all possible human missense variants 
using features derived from AlphaFold protein structure predictions and evolutionary conservation. 

Model Architecture 

Input features:  amino acid sequence context, evolutionary conservation (from MSA), and structural 
features from AlphaFold 

Output:  pathogenicity score (0-1, continuous) 

Total predictions:  71,697,560 unique missense variants 

Calibrated Thresholds 

Pathogenic:  >0.564 (90% precision on ClinVar pathogenic set) 

Ambiguous:  0.34-0.564 



Benign:  <0.34 (90% precision on ClinVar benign set) 

Critical Limitation 

AlphaMissense only predicts missense variant effects. Stop-gain, frameshift, splice site, and non-coding 
variants require other prediction tools. The pipeline uses VEP for functional consequence annotation to 
complement AlphaMissense. 

2.3 Ensembl VEP: Functional Consequence Prediction 

The Variant Effect Predictor maps variants to genes, transcripts, and regulatory regions, annotating each with 
standardized Sequence Ontology (SO) terms. 

Impact Classification 

Impact Level Example Consequences Typical Action 

HIGH stop_gained, frameshift_variant, 
splice_donor_variant 

Likely loss of function 

MODERATE missense_variant, inframe_deletion Protein function may change 

LOW synonymous_variant, 
splice_region_variant 

Unlikely to affect protein 

MODIFIER intron_variant, upstream_gene_variant Non-coding effects 
 

2.4 The Annotation Pipeline Architecture 

The three annotation databases are applied sequentially in annotator.py (23 KB): 

Annotation Pipeline Flow 
VCF (11.7M variants) 
  → parse_vcf(min_qual=30)     → 3.5M variants 
  → annotate_clinvar()          → Clinical significance 
  → annotate_alphamissense()    → AI pathogenicity scores 
  → annotate_vep()              → Functional consequences 
  → generate_text_summary()     → Natural language descriptions 
  → embed_variants()            → 384-dim BGE embeddings 
  → index_in_milvus()           → Searchable vector database 

 

 

Chapter 3: Vector Database Architecture — Milvus 
and RAG 

3.1 Milvus Schema Design 

The genomic_evidence collection in Milvus 2.4 uses a 17-field schema designed to support both vector 
similarity search and scalar filtering: 



Field Type Rationale 

id INT64 (PK, auto) Milvus-managed primary key 

embedding FLOAT_VECTOR(384) Semantic search vector 

chrom VARCHAR(10) Genomic coordinate filtering 

pos INT64 Positional queries 

ref/alt VARCHAR(1000) Allele matching 

qual FLOAT Quality score filtering 

gene VARCHAR(100) Gene-level queries 

consequence VARCHAR(200) Functional filtering (e.g., missense only) 

impact VARCHAR(20) Impact level filtering 

genotype VARCHAR(10) Zygosity queries 

text_summary VARCHAR(2000) Human-readable context for RAG 

clinical_significance VARCHAR(200) ClinVar classification 

rsid VARCHAR(20) dbSNP lookup 

disease_associations VARCHAR(2000) Disease context for RAG 

am_pathogenicity FLOAT AlphaMissense score filtering 

am_class VARCHAR(20) Pathogenicity class filtering 
 

3.2 Index Configuration and Performance 

Index Type: IVF_FLAT (Inverted File with Flat Vectors) 

Why IVF_FLAT?  At 3.5M vectors with 384 dimensions, IVF_FLAT provides the best recall-latency tradeoff. 
HNSW would use more memory; IVF_PQ would sacrifice recall. 

nlist=1024:  Partitions vectors into 1024 clusters. Query searches ~16 clusters (nprobe=16), examining 
~55K vectors per query. 

Metric:  COSINE similarity (normalized dot product) 

Search Performance 

Metric Value 

Index build time ~8 minutes (3.5M × 384-dim) 

Index memory ~2 GB 

Search latency (nprobe=16) 8-15 ms 

Recall@20 >95% 

 

3.3 RAG Architecture with Claude 

The RAG pipeline in rag_engine.py (23 KB) implements a multi-stage retrieval strategy: 

 



1. Query Expansion 

User queries are enriched using 10 therapeutic area keyword maps. For example, a query about 
"neurodegeneration" is expanded with terms like "frontotemporal dementia," "ALS," "motor neuron," "tau 
protein." 

2. Hybrid Retrieval 
The expanded query is embedded and used for vector search (top_k=20). Results are optionally filtered by 
scalar fields (e.g., impact=HIGH, am_class=pathogenic). 

3. Context Assembly 

Retrieved variants are formatted into structured context: 

Context Template 
## Variant Evidence 
- chr9:35065263 G>A | Gene: VCP | Consequence: missense_variant 
  ClinVar: Pathogenic | AlphaMissense: 0.87 (pathogenic) 
  Disease: Frontotemporal Dementia, ALS, IBMPFD 

4. Claude Inference 

The assembled context + knowledge base + user query are sent to claude-sonnet-4-20250514 
(temperature=0.3, max_tokens=4096). 

Why temperature=0.3? 

Lower temperature produces more deterministic, factual responses. For clinical genomics, hallucination is 
dangerous — the model should report only what the evidence supports. 

 

 

Chapter 4: Drug Discovery Pipeline — Deep Dive 

4.1 The 10-Stage Architecture 

The drug discovery pipeline in pipeline.py (18 KB) implements a sequential 10-stage workflow: 

Stage Module Key Algorithm 

1. Initialize pipeline.py Pydantic model validation 

2. Normalize Target pipeline.py Gene → UniProt → PDB mapping 

3. Structure Discovery cryoem_evidence.py RCSB PDB REST API query 

4. Structure Preparation cryoem_evidence.py Multi-factor scoring 

5. Molecule Generation nim_clients.py MolMIM masked LM inference 

6. Chemistry QC molecule_generator.py RDKit valence/kekulization 

7. Conformer Generation molecule_generator.py RDKit ETKDG algorithm 

8. Molecular Docking nim_clients.py DiffDock diffusion inference 

9. Composite Ranking pipeline.py Weighted multi-objective 



10. Reporting pipeline.py ReportLab PDF generation 

4.2 Cryo-EM Structure Scoring 

The cryoem_evidence.py (6 KB) module implements a multi-factor structure scoring algorithm: 

Python 
score += max(0, 5.0 - resolution)                 # Resolution: 0-5 scale 
if has_inhibitor_bound: score += 3.0                # Binding site defined 
score += num_druggable_pockets * 0.5                # Pocket count bonus 
if 'Cryo-EM' in method: score += 0.5                 # Method bonus 

Design Rationale 

Resolution:  the primary factor (0-5 scale). The 5 Å cutoff excludes low-resolution structures unsuitable 
for docking. 

Inhibitor bonus (+3):  Inhibitor-bound structures provide a pre-defined binding site and reference ligand 
geometry. 

Pocket count (+0.5 each):  More druggable pockets increase therapeutic options. 

Cryo-EM bonus (+0.5):  Reflects the growing prevalence and quality of Cryo-EM structures for drug 
targets. 

4.3 MolMIM: Molecular Masked Inverse Modeling 

MolMIM applies masked language modeling (the technique behind BERT in NLP) to molecular SMILES strings. 
Given a seed molecule, it: 

1.  Tokenizes the SMILES into a vocabulary of molecular substructures 
2.  Randomly masks 15-30% of tokens 

3.  Predicts the masked tokens using a transformer architecture 

4.  The predicted tokens create novel molecular structures 

Critical Considerations 

SMILES output:  MolMIM generates SMILES strings, not 3D structures. Chemical validity must be verified 
by RDKit. 

Stochastic generation:  Different random seeds produce different molecules. 

Temperature control:  Higher temperature = more diverse but potentially less valid molecules. 

4.4 DiffDock: Diffusion-Based Molecular Docking 

DiffDock (Corso et al., ICLR 2023) models molecular docking as a generative diffusion process over the product 
space of rotations, translations, and torsion angles. 

Key Innovation 

Unlike grid-based docking methods (AutoDock Vina, Glide), DiffDock does not require a pre-defined search 
box around a binding site. It learns to predict binding poses directly from protein-ligand pairs, making it 
suitable for blind docking. 



Score Interpretation 

Confidence score (0-1):  indicates the model's certainty about the predicted pose 

Binding affinity (kcal/mol):  estimates the free energy of binding; more negative = stronger binding 

Limitations 

Training bias:  DiffDock was trained primarily on crystal structures; performance may degrade on Cryo-
EM structures with lower resolution 

No kinetics:  The model predicts pose and affinity but not binding kinetics (on/off rates) 
Rigid protein:  Protein flexibility is not modeled — the protein is treated as rigid 

4.5 Composite Scoring and Normalization 

The composite scoring formula balances three objectives: 

Python 
dock_normalized = max(0.0, min(1.0, (10.0 + dock_score) / 20.0)) 
composite = 0.30 * gen_score + 0.40 * dock_normalized + 0.30 * qed_score 

Normalization Rationale 

Docking scores:  range from ~-15 to ~0 kcal/mol. The formula (10 + dock) / 20 maps this to approximately 
0-1, with -10 kcal/mol mapping to 0.0 and +10 mapping to 1.0. 

Generation scores:  already 0-1 (MolMIM confidence). 

QED scores:  inherently 0-1. 

Weight Rationale 

Docking (40%):  receives the highest weight because binding affinity is the most direct predictor of 
therapeutic activity 

Generation (30%):  balances novelty of the molecular design 
QED (30%):  balances practical drug-likeness 

 

 

Chapter 5: Nextflow DSL2 Pipeline Architecture 

5.1 Module Design 

The pipeline uses Nextflow DSL2's module system for composable workflow design: 

Directory Structure 
hls-orchestrator/ 
├── main.nf                 # Entry point, mode routing 
├── nextflow.config         # Profiles, parameters 
├── run_pipeline.py         # Python CLI launcher 
└── modules/ 
    ├── genomics.nf         # Stage 1 processes 
    ├── rag_chat.nf         # Stage 2 processes 
    ├── drug_discovery.nf   # Stage 3 processes 
    └── reporting.nf        # Report generation 



5.2 Execution Modes and Data Flow 

Mode Data Flow Use Case 

full FASTQ → VCF → Target → Candidates Complete pipeline 

target VCF → Target → Candidates Pre-existing VCF 

drug Target → Candidates Known gene target 

demo Pre-configured FASTQ → Candidates VCP/FTD demonstration 

genomics_only FASTQ → VCF Variant calling only 

5.3 Profile Configuration 

The nextflow.config defines six execution profiles optimized for different environments: 

dgx_spark:  GPU resource requests, memory limits tuned for 128 GB unified memory 

docker:  Docker container execution with GPU passthrough 

singularity:  Singularity containers for HPC environments without Docker 

slurm:  SLURM scheduler integration for cluster execution 
 

 

Chapter 6: Clinical Translation and Limitations 

6.1 From Computational Hits to Drug Leads 

The HCLS AI Factory generates computational drug candidates — not approved medications. The path from 
computational hit to clinical drug requires: 

1. In vitro validation:  Test top candidates in biochemical assays (e.g., VCP ATPase activity inhibition) 

2. Cell-based assays:  Confirm activity in relevant cell lines 
3. ADMET profiling:  Absorption, Distribution, Metabolism, Excretion, and Toxicity studies 

4. Lead optimization:  Iterative cycles of design, synthesis, and testing 

5. Preclinical studies:  Animal models for efficacy and safety 

6. Clinical trials:  Phase I (safety), Phase II (efficacy), Phase III (large-scale) 

Estimated Timeline 

10-15 years from computational hit to approved drug. The HCLS AI Factory accelerates the earliest stage — 
computational lead generation — from months to minutes. 

6.2 Limitations and Caveats 

Genomics 

•  DeepVariant accuracy varies by variant type (SNPs > indels > structural variants) 



•  Short-read WGS has limited sensitivity for structural variants and repeat expansions 

•  Population-specific biases in GRCh38 may affect variant calling in non-European ancestries 

RAG/Annotation 

•  ClinVar has known biases toward well-studied genes and European ancestry variants 

•  AlphaMissense is limited to missense variants; non-coding variants are not scored 
•  The 201-gene knowledge base covers common drug targets but not the full druggable genome 

Drug Discovery 

•  MolMIM-generated molecules have not been synthesized or tested 

•  DiffDock docking scores are predictions, not experimental measurements 

•  Protein flexibility is not modeled; induced-fit effects are ignored 
•  The composite scoring weights (30/40/30) are heuristic, not optimized on clinical outcomes 

6.3 Ethical Considerations 

Informed consent:  Patient genomic data requires explicit consent for research use 

Data sovereignty:  NVIDIA FLARE federated learning keeps data local; essential for HIPAA/GDPR 
compliance 

Return of results:  Incidental findings (e.g., BRCA1 pathogenic variants) may require clinical reporting 

Equity:  Pipeline performance should be validated across diverse ancestries to avoid exacerbating health 
disparities 

 

 

Chapter 7: Scaling Analysis 

7.1 DGX Spark Bottleneck Analysis 

Component Bottleneck Phase 1 Impact 

Parabricks (fq2bam) GPU compute 20-45 min, acceptable 

DeepVariant GPU memory (60 GB peak) Leaves 68 GB for other tasks 

Milvus indexing CPU + I/O 24 min for 3.5M vectors 

MolMIM inference GPU compute 2 min for 100 molecules 

DiffDock inference GPU compute + memory 8 min for 98 candidates 

Sequential total GPU time-sharing ~4 hours end-to-end 

 

 



7.2 Phase 2: DGX B200 Scaling 

With 8× B200 GPUs and 1-2 TB HBM3e: 

Parallel Parabricks:  4-8 simultaneous samples 

Dedicated Milvus GPU:  GPU-accelerated vector search (sub-millisecond) 

NIM replicas:  2-4 MolMIM + 2-4 DiffDock instances 

Estimated throughput:  10-20 patients per day 

7.3 Phase 3: DGX SuperPOD 

Hundreds of B200 GPUs  with NVLink and InfiniBand 

Distributed Milvus cluster:  Billions of variants across institutions 

NVIDIA FLARE:  Federated model training without data sharing 
Estimated throughput:  Thousands of patients per day 

 

 

Chapter 8: Advanced Topics and Extensions 

8.1 Alternative Embedding Strategies 

BGE-small-en-v1.5 (384-dim) was chosen for its balance of quality and efficiency. Alternatives: 

Model Dimensions Size Trade-off 

BGE-small-en-v1.5 384 33M params Current choice: fast, efficient 

BGE-base-en-v1.5 768 109M params Better recall, 2× memory 

BGE-large-en-v1.5 1024 335M params Best recall, 3× memory 

BiomedBERT 768 109M params Domain-specific, biomedical 
text 

PubMedBERT 768 109M params PubMed-trained, clinical text 

 

8.2 Multi-Objective Optimization 

The current composite scoring uses fixed weights (30/40/30). Advanced approaches: 

Pareto optimization:  Identify the Pareto frontier of generation, docking, and QED 

Bayesian optimization:  Learn optimal weights from experimental feedback 
Active learning:  Prioritize candidates that reduce uncertainty in the scoring model 



8.3 Long-Read Sequencing Integration 

Oxford Nanopore and PacBio long-read technologies can detect structural variants (SVs) and repeat 
expansions that short-read WGS misses. Future extensions could: 

•  Add ONT/PacBio alignment with minimap2 
•  Detect SVs with Sniffles2 or PEPPER-Margin-DeepVariant 

•  Phase haplotypes for compound heterozygosity detection 

8.4 Pharmacogenomics Integration 

The knowledge base includes 11 pharmacogenomics genes (CYP2D6, CYP2C19, CYP3A4, DPYD, TPMT, etc.). 
Future extensions could: 

•  Star allele calling with PharmCAT 
•  Drug-drug interaction prediction 

•  Dosing recommendations based on metabolizer status 
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