
Open-Source Project

Intermediate-Advanced Learning Guide
HCLS AI Factory
Professional Level
Deep technical analysis of the HCLS AI Factory architecture, from BWA-MEM2 seed-and-extend algorithms through diffusion-based molecular docking, with emphasis on algorithmic design decisions, scaling bottlenecks, and clinical translation barriers.
NVIDIA DGX Spark | Parabricks | BioNeMo

02/2026 | Version 1.0 | Apache 2.0 License
Author: Adam Jones

Table of Contents
1. Computational Genomics — From FASTQ to VCF
2. Variant Annotation — Multi-Database Integration
3. Vector Database Architecture — Milvus and RAG
4. Drug Discovery Pipeline — Deep Dive
5. Nextflow DSL2 Pipeline Architecture
6. Clinical Translation and Limitations
7. Scaling Analysis
8. Advanced Topics and Extensions
Review Questions

Chapter 1: Computational Genomics — From FASTQ to VCF
1.1 Sequencing Data Characteristics
The HCLS AI Factory processes Illumina short-read data: 2×250 bp paired-end reads from 30× whole-genome sequencing of HG002 (NA24385), a GIAB Ashkenazi Jewish reference standard. The FASTQ files total approximately 200 GB and contain ~800 million read pairs.
Why HG002?
The Genome in a Bottle (GIAB) Consortium provides extensively validated truth sets for HG002, enabling rigorous benchmarking. The high-confidence regions cover >95% of the GRCh38 reference, with variant calls validated by multiple orthogonal technologies (PacBio HiFi, Oxford Nanopore, Hi-C, optical mapping).
1.2 GPU-Accelerated Alignment: BWA-MEM2 on Parabricks
NVIDIA Parabricks 4.6.0-1 (container: nvcr.io/nvidia/clara/clara-parabricks:4.6.0-1) provides a GPU-accelerated implementation of BWA-MEM2.
Algorithm Overview
BWA-MEM2 uses a seed-and-extend approach:
1. Seeding: Extract fixed-length k-mers from the query read and look them up in the FM-index of the reference genome
2. Chaining: Group collinear seeds into chains representing candidate alignment locations
3. Extension: Perform Smith-Waterman local alignment around each chain to produce the final alignment
4. Scoring: Select the best alignment and assign a MAPQ (mapping quality) score
GPU Acceleration Strategy
Parabricks parallelizes the computationally intensive Smith-Waterman extension step across GPU cores. The FM-index lookup (seeding) remains CPU-bound but constitutes a small fraction of total compute. The fq2bam command also integrates coordinate sorting and duplicate marking, eliminating separate samtools sort and picard MarkDuplicates steps.
Performance on DGX Spark (GB10)
	Metric
	Value

	Wall time
	120-240 minutes

	GPU utilization
	70-90%

	Peak memory
	~40 GB (of 128 GB unified)

	Output
	Sorted BAM + BAI index

	Mapping rate
	>99.5%

	Duplicate rate
	~8-12%

1.3 Deep Learning Variant Calling: DeepVariant
Google DeepVariant reframes variant calling as an image classification problem. For each candidate variant site, it constructs a pileup image — a visual representation of aligned reads at that position — and classifies it using a convolutional neural network (CNN).
Architecture Details
Input: Pileup image (channels: read bases, base qualities, mapping qualities, strand, etc.)
Network: Inception-v3 CNN architecture
Output: Three-class softmax (homozygous reference, heterozygous variant, homozygous variant)
Training: Supervised on GIAB truth sets, with data augmentation and hard example mining
Why DeepVariant Outperforms GATK HaplotypeCaller
1. The CNN learns complex error patterns that statistical models cannot capture
2. No explicit error model required — the network learns directly from data
3. Better performance on indels and complex variants
4. Transferable across sequencing platforms (Illumina, PacBio, ONT)
Performance
	Metric
	Value

	Wall time
	10-35 minutes (GPU-accelerated via Parabricks)

	GPU utilization
	80-95%

	Peak memory
	~60 GB

	SNP F1
	>99.7% on HG002

	Indel F1
	>99.4% on HG002

	Total variants
	~11.7M (unfiltered)

	QUAL>30 variants
	~3.5M

1.4 VCF Quality Metrics
	Metric
	Expected Range
	Interpretation

	Ti/Tv ratio
	2.0-2.1
	Transition/transversion ratio; deviation suggests systematic error

	Het/Hom ratio
	1.5-2.0
	Heterozygous/homozygous ratio; population-dependent

	SNP count
	~4.2M
	Consistent with Ashkenazi ancestry

	Indel count
	~1.0M
	Normal range for WGS

	Novel variant rate
	<5%
	Variants not in dbSNP; higher rates suggest error

Chapter 2: Variant Annotation — Multi-Database Integration
2.1 ClinVar: Clinical Variant Classification
ClinVar (NCBI) is a freely accessible archive of relationships between human variants and phenotypes. The HCLS AI Factory integrates the February 2026 release containing 4.1 million variant-condition records.
Classification System (ACMG/AMP)
Pathogenic (P) — Strong evidence of disease causation
Likely Pathogenic (LP) — Moderate evidence
Variant of Uncertain Significance (VUS) — Insufficient evidence
Likely Benign (LB) — Moderate evidence against pathogenicity
Benign (B) — Strong evidence against pathogenicity
Review Status Tiers
ClinVar classifies assertion confidence using star ratings (0-4 stars). The pipeline weights variants with ≥2 stars (multiple submitters with concordant interpretations) more heavily.
Annotation Performance
Of ~3.5M QUAL>30 variants, approximately 35,616 (1.0%) match ClinVar entries. The low match rate reflects that most variants in a healthy individual are common polymorphisms not represented in a clinical database focused on rare disease.
2.2 AlphaMissense: AI Pathogenicity Prediction
AlphaMissense (Cheng et al., Science 2023) predicts the pathogenicity of all possible human missense variants using features derived from AlphaFold protein structure predictions and evolutionary conservation.
Model Architecture
Input features: amino acid sequence context, evolutionary conservation (from MSA), and structural features from AlphaFold
Output: pathogenicity score (0-1, continuous)
Total predictions: 71,697,560 unique missense variants
Calibrated Thresholds
Pathogenic: >0.564 (90% precision on ClinVar pathogenic set)
Ambiguous: 0.34-0.564
Benign: <0.34 (90% precision on ClinVar benign set)
Critical Limitation
AlphaMissense only predicts missense variant effects. Stop-gain, frameshift, splice site, and non-coding variants require other prediction tools. The pipeline uses VEP for functional consequence annotation to complement AlphaMissense.
2.3 Ensembl VEP: Functional Consequence Prediction
The Variant Effect Predictor maps variants to genes, transcripts, and regulatory regions, annotating each with standardized Sequence Ontology (SO) terms.
Impact Classification
	Impact Level
	Example Consequences
	Typical Action

	HIGH
	stop_gained, frameshift_variant, splice_donor_variant
	Likely loss of function

	MODERATE
	missense_variant, inframe_deletion
	Protein function may change

	LOW
	synonymous_variant, splice_region_variant
	Unlikely to affect protein

	MODIFIER
	intron_variant, upstream_gene_variant
	Non-coding effects

2.4 The Annotation Pipeline Architecture
The three annotation databases are applied sequentially in annotator.py (23 KB):
Annotation Pipeline Flow
VCF (11.7M variants)
 → parse_vcf(min_qual=30) → 3.5M variants
 → annotate_clinvar() → Clinical significance
 → annotate_alphamissense() → AI pathogenicity scores
 → annotate_vep() → Functional consequences
 → generate_text_summary() → Natural language descriptions
 → embed_variants() → 384-dim BGE embeddings
 → index_in_milvus() → Searchable vector database

Chapter 3: Vector Database Architecture — Milvus and RAG
3.1 Milvus Schema Design
The genomic_evidence collection in Milvus 2.4 uses a 17-field schema designed to support both vector similarity search and scalar filtering:
	Field
	Type
	Rationale

	id
	INT64 (PK, auto)
	Milvus-managed primary key

	embedding
	FLOAT_VECTOR(384)
	Semantic search vector

	chrom
	VARCHAR(10)
	Genomic coordinate filtering

	pos
	INT64
	Positional queries

	ref/alt
	VARCHAR(1000)
	Allele matching

	qual
	FLOAT
	Quality score filtering

	gene
	VARCHAR(100)
	Gene-level queries

	consequence
	VARCHAR(200)
	Functional filtering (e.g., missense only)

	impact
	VARCHAR(20)
	Impact level filtering

	genotype
	VARCHAR(10)
	Zygosity queries

	text_summary
	VARCHAR(2000)
	Human-readable context for RAG

	clinical_significance
	VARCHAR(200)
	ClinVar classification

	rsid
	VARCHAR(20)
	dbSNP lookup

	disease_associations
	VARCHAR(2000)
	Disease context for RAG

	am_pathogenicity
	FLOAT
	AlphaMissense score filtering

	am_class
	VARCHAR(20)
	Pathogenicity class filtering

3.2 Index Configuration and Performance
Index Type: IVF_FLAT (Inverted File with Flat Vectors)
Why IVF_FLAT? At 3.5M vectors with 384 dimensions, IVF_FLAT provides the best recall-latency tradeoff. HNSW would use more memory; IVF_PQ would sacrifice recall.
nlist=1024: Partitions vectors into 1024 clusters. Query searches ~16 clusters (nprobe=16), examining ~55K vectors per query.
Metric: COSINE similarity (normalized dot product)
Search Performance
	Metric
	Value

	Index build time
	~8 minutes (3.5M × 384-dim)

	Index memory
	~2 GB

	Search latency (nprobe=16)
	8-15 ms

	Recall@20
	>95%

3.3 RAG Architecture with Claude
The RAG pipeline in rag_engine.py (23 KB) implements a multi-stage retrieval strategy:

1. Query Expansion
User queries are enriched using 10 therapeutic area keyword maps. For example, a query about "neurodegeneration" is expanded with terms like "frontotemporal dementia," "ALS," "motor neuron," "tau protein."
2. Hybrid Retrieval
The expanded query is embedded and used for vector search (top_k=20). Results are optionally filtered by scalar fields (e.g., impact=HIGH, am_class=pathogenic).
3. Context Assembly
Retrieved variants are formatted into structured context:
Context Template
Variant Evidence
- chr9:35065263 G>A | Gene: VCP | Consequence: missense_variant
 ClinVar: Pathogenic | AlphaMissense: 0.87 (pathogenic)
 Disease: Frontotemporal Dementia, ALS, IBMPFD
4. Claude Inference
The assembled context + knowledge base + user query are sent to claude-sonnet-4-20250514 (temperature=0.3, max_tokens=4096).
Why temperature=0.3?
Lower temperature produces more deterministic, factual responses. For clinical genomics, hallucination is dangerous — the model should report only what the evidence supports.

Chapter 4: Drug Discovery Pipeline — Deep Dive
4.1 The 10-Stage Architecture
The drug discovery pipeline in pipeline.py (18 KB) implements a sequential 10-stage workflow:
	Stage
	Module
	Key Algorithm

	1. Initialize
	pipeline.py
	Pydantic model validation

	2. Normalize Target
	pipeline.py
	Gene → UniProt → PDB mapping

	3. Structure Discovery
	cryoem_evidence.py
	RCSB PDB REST API query

	4. Structure Preparation
	cryoem_evidence.py
	Multi-factor scoring

	5. Molecule Generation
	nim_clients.py
	MolMIM masked LM inference

	6. Chemistry QC
	molecule_generator.py
	RDKit valence/kekulization

	7. Conformer Generation
	molecule_generator.py
	RDKit ETKDG algorithm

	8. Molecular Docking
	nim_clients.py
	DiffDock diffusion inference

	9. Composite Ranking
	pipeline.py
	Weighted multi-objective

	10. Reporting
	pipeline.py
	ReportLab PDF generation

4.2 Cryo-EM Structure Scoring
The cryoem_evidence.py (6 KB) module implements a multi-factor structure scoring algorithm:
Python
score += max(0, 5.0 - resolution) # Resolution: 0-5 scale
if has_inhibitor_bound: score += 3.0 # Binding site defined
score += num_druggable_pockets * 0.5 # Pocket count bonus
if 'Cryo-EM' in method: score += 0.5 # Method bonus
Design Rationale
Resolution: the primary factor (0-5 scale). The 5 Å cutoff excludes low-resolution structures unsuitable for docking.
Inhibitor bonus (+3): Inhibitor-bound structures provide a pre-defined binding site and reference ligand geometry.
Pocket count (+0.5 each): More druggable pockets increase therapeutic options.
Cryo-EM bonus (+0.5): Reflects the growing prevalence and quality of Cryo-EM structures for drug targets.
4.3 MolMIM: Molecular Masked Inverse Modeling
MolMIM applies masked language modeling (the technique behind BERT in NLP) to molecular SMILES strings. Given a seed molecule, it:
1. Tokenizes the SMILES into a vocabulary of molecular substructures
2. Randomly masks 15-30% of tokens
3. Predicts the masked tokens using a transformer architecture
4. The predicted tokens create novel molecular structures
Critical Considerations
SMILES output: MolMIM generates SMILES strings, not 3D structures. Chemical validity must be verified by RDKit.
Stochastic generation: Different random seeds produce different molecules.
Temperature control: Higher temperature = more diverse but potentially less valid molecules.
4.4 DiffDock: Diffusion-Based Molecular Docking
DiffDock (Corso et al., ICLR 2023) models molecular docking as a generative diffusion process over the product space of rotations, translations, and torsion angles.
Key Innovation
Unlike grid-based docking methods (AutoDock Vina, Glide), DiffDock does not require a pre-defined search box around a binding site. It learns to predict binding poses directly from protein-ligand pairs, making it suitable for blind docking.
Score Interpretation
Confidence score (0-1): indicates the model's certainty about the predicted pose
Binding affinity (kcal/mol): estimates the free energy of binding; more negative = stronger binding
Limitations
Training bias: DiffDock was trained primarily on crystal structures; performance may degrade on Cryo-EM structures with lower resolution
No kinetics: The model predicts pose and affinity but not binding kinetics (on/off rates)
Rigid protein: Protein flexibility is not modeled — the protein is treated as rigid
4.5 Composite Scoring and Normalization
The composite scoring formula balances three objectives:
Python
dock_normalized = max(0.0, min(1.0, (10.0 + dock_score) / 20.0))
composite = 0.30 * gen_score + 0.40 * dock_normalized + 0.30 * qed_score
Normalization Rationale
Docking scores: range from ~-15 to ~0 kcal/mol. The formula (10 + dock) / 20 maps this to approximately 0-1, with -10 kcal/mol mapping to 0.0 and +10 mapping to 1.0.
Generation scores: already 0-1 (MolMIM confidence).
QED scores: inherently 0-1.
Weight Rationale
Docking (40%): receives the highest weight because binding affinity is the most direct predictor of therapeutic activity
Generation (30%): balances novelty of the molecular design
QED (30%): balances practical drug-likeness

Chapter 5: Nextflow DSL2 Pipeline Architecture
5.1 Module Design
The pipeline uses Nextflow DSL2's module system for composable workflow design:
Directory Structure
hls-orchestrator/
├── main.nf # Entry point, mode routing
├── nextflow.config # Profiles, parameters
├── run_pipeline.py # Python CLI launcher
└── modules/
 ├── genomics.nf # Stage 1 processes
 ├── rag_chat.nf # Stage 2 processes
 ├── drug_discovery.nf # Stage 3 processes
 └── reporting.nf # Report generation
5.2 Execution Modes and Data Flow
	Mode
	Data Flow
	Use Case

	full
	FASTQ → VCF → Target → Candidates
	Complete pipeline

	target
	VCF → Target → Candidates
	Pre-existing VCF

	drug
	Target → Candidates
	Known gene target

	demo
	Pre-configured FASTQ → Candidates
	VCP/FTD demonstration

	genomics_only
	FASTQ → VCF
	Variant calling only

5.3 Profile Configuration
The nextflow.config defines six execution profiles optimized for different environments:
dgx_spark: GPU resource requests, memory limits tuned for 128 GB unified memory
docker: Docker container execution with GPU passthrough
singularity: Singularity containers for HPC environments without Docker
slurm: SLURM scheduler integration for cluster execution

Chapter 6: Clinical Translation and Limitations
6.1 From Computational Hits to Drug Leads
The HCLS AI Factory generates computational drug candidates — not approved medications. The path from computational hit to clinical drug requires:
1. In vitro validation: Test top candidates in biochemical assays (e.g., VCP ATPase activity inhibition)
2. Cell-based assays: Confirm activity in relevant cell lines
3. ADMET profiling: Absorption, Distribution, Metabolism, Excretion, and Toxicity studies
4. Lead optimization: Iterative cycles of design, synthesis, and testing
5. Preclinical studies: Animal models for efficacy and safety
6. Clinical trials: Phase I (safety), Phase II (efficacy), Phase III (large-scale)
Estimated Timeline
10-15 years from computational hit to approved drug. The HCLS AI Factory accelerates the earliest stage — computational lead generation — from months to minutes.
6.2 Limitations and Caveats
Genomics
• DeepVariant accuracy varies by variant type (SNPs > indels > structural variants)
• Short-read WGS has limited sensitivity for structural variants and repeat expansions
• Population-specific biases in GRCh38 may affect variant calling in non-European ancestries
RAG/Annotation
• ClinVar has known biases toward well-studied genes and European ancestry variants
• AlphaMissense is limited to missense variants; non-coding variants are not scored
• The 201-gene knowledge base covers common drug targets but not the full druggable genome
Drug Discovery
• MolMIM-generated molecules have not been synthesized or tested
• DiffDock docking scores are predictions, not experimental measurements
• Protein flexibility is not modeled; induced-fit effects are ignored
• The composite scoring weights (30/40/30) are heuristic, not optimized on clinical outcomes
6.3 Ethical Considerations
Informed consent: Patient genomic data requires explicit consent for research use
Data sovereignty: NVIDIA FLARE federated learning keeps data local; essential for HIPAA/GDPR compliance
Return of results: Incidental findings (e.g., BRCA1 pathogenic variants) may require clinical reporting
Equity: Pipeline performance should be validated across diverse ancestries to avoid exacerbating health disparities

Chapter 7: Scaling Analysis
7.1 DGX Spark Bottleneck Analysis
	Component
	Bottleneck
	Phase 1 Impact

	Parabricks (fq2bam)
	GPU compute
	20-45 min, acceptable

	DeepVariant
	GPU memory (60 GB peak)
	Leaves 68 GB for other tasks

	Milvus indexing
	CPU + I/O
	24 min for 3.5M vectors

	MolMIM inference
	GPU compute
	2 min for 100 molecules

	DiffDock inference
	GPU compute + memory
	8 min for 98 candidates

	Sequential total
	GPU time-sharing
	~4 hours end-to-end

7.2 Phase 2: DGX B200 Scaling
With 8× B200 GPUs and 1-2 TB HBM3e:
Parallel Parabricks: 4-8 simultaneous samples
Dedicated Milvus GPU: GPU-accelerated vector search (sub-millisecond)
NIM replicas: 2-4 MolMIM + 2-4 DiffDock instances
Estimated throughput: 10-20 patients per day
7.3 Phase 3: DGX SuperPOD
Hundreds of B200 GPUs with NVLink and InfiniBand
Distributed Milvus cluster: Billions of variants across institutions
NVIDIA FLARE: Federated model training without data sharing
Estimated throughput: Thousands of patients per day

Chapter 8: Advanced Topics and Extensions
8.1 Alternative Embedding Strategies
BGE-small-en-v1.5 (384-dim) was chosen for its balance of quality and efficiency. Alternatives:
	Model
	Dimensions
	Size
	Trade-off

	BGE-small-en-v1.5
	384
	33M params
	Current choice: fast, efficient

	BGE-base-en-v1.5
	768
	109M params
	Better recall, 2× memory

	BGE-large-en-v1.5
	1024
	335M params
	Best recall, 3× memory

	BiomedBERT
	768
	109M params
	Domain-specific, biomedical text

	PubMedBERT
	768
	109M params
	PubMed-trained, clinical text

8.2 Multi-Objective Optimization
The current composite scoring uses fixed weights (30/40/30). Advanced approaches:
Pareto optimization: Identify the Pareto frontier of generation, docking, and QED
Bayesian optimization: Learn optimal weights from experimental feedback
Active learning: Prioritize candidates that reduce uncertainty in the scoring model
8.3 Long-Read Sequencing Integration
Oxford Nanopore and PacBio long-read technologies can detect structural variants (SVs) and repeat expansions that short-read WGS misses. Future extensions could:
• Add ONT/PacBio alignment with minimap2
• Detect SVs with Sniffles2 or PEPPER-Margin-DeepVariant
• Phase haplotypes for compound heterozygosity detection
8.4 Pharmacogenomics Integration
The knowledge base includes 11 pharmacogenomics genes (CYP2D6, CYP2C19, CYP3A4, DPYD, TPMT, etc.). Future extensions could:
• Star allele calling with PharmCAT
• Drug-drug interaction prediction
• Dosing recommendations based on metabolizer status

HCLS AI Factory Learning Guide: Advanced — Apache 2.0 | Author: Adam Jones | February 2026
