

Open-Source Project

Deployment Guide

HCLS AI Factory

Deployment and Configuration Guide
for NVIDIA DGX Spark

Open-Source Precision Medicine Platform
on NVIDIA DGX Spark

02/2026 | Version 1.0 | Apache 2.0 License

Author: Adam Jones

Table of Contents

1. Introduction

2. Architecture Overview

3. Prerequisites

4. Environment Preparation

5. Repository Setup

6. Reference Data Preparation

7. Docker Compose Configuration

8. Deploy Genomics Pipeline (Stage 1)

9. Deploy RAG Chat Pipeline (Stage 2)

10. Deploy Drug Discovery Pipeline (Stage 3)

11. Nextflow Orchestration

12. Service Startup and Health

13. Monitoring and Observability

14. Security Configuration

15. Data Management

16. Performance Tuning

17. Troubleshooting Guide

18. VCP/FTD Demo Walkthrough

19. Scaling Beyond DGX Spark

20. Appendix A: Complete Configuration Reference

21. Appendix B: API Reference

22. Appendix C: Schema Definitions

23. Appendix D: Docker Image Reference

24. Appendix E: Validation Checklists

25. Appendix F: Glossary

1. Introduction

1.1 Purpose

This document provides step-by-step instructions for deploying the HCLS AI Factory on an NVIDIA DGX Spark
workstation. It covers all three pipeline stages — genomics, RAG-powered variant intelligence, and AI-driven
drug discovery — using exclusively open-source and publicly available components.

1.2 Scope

The guide addresses hardware validation, software installation, container deployment, data preparation,
pipeline execution, monitoring, security, and troubleshooting. It targets the open-source fork of the HCLS AI
Factory that runs entirely on Docker Compose without requiring VAST Data, Kubernetes, or multi-node
infrastructure.

1.3 Audience

• Bioinformatics Engineers deploying genomics pipelines on DGX Spark
• ML/AI Engineers integrating RAG and BioNeMo NIM microservices
• DevOps Engineers managing containerized service stacks
• Researchers forking the project for their own precision medicine workflows

1.4 Document Conventions

Convention Meaning
monospace Commands, file paths, code
Bold UI elements, key terms
Italic Variable values to be replaced
$VARIABLE Environment variable
<placeholder> User-supplied value

1.5 Genomics and Drug Discovery Primer

This section provides essential background for engineers who may not have a biology or chemistry background.

1.5.1 DNA Sequencing

DNA sequencing reads the order of nucleotide bases (A, T, C, G) in an organism's genome. Modern short-read
sequencers (e.g., Illumina) produce paired-end reads — two sequences from opposite ends of a DNA fragment.
The standard demo sample HG002 is a 30x whole-genome sequencing (WGS) dataset with 2x250 bp paired-end
reads, producing approximately 200 GB of FASTQ data.

1.5.2 Genomics Pipeline Stages

Stage Input Tool Output Description

Quality Control FASTQ FastQC QC Report Assess read quality and
adapter contamination

Alignment FASTQ + Reference BWA-MEM2 (fq2bam) BAM Map reads to GRCh38
reference genome

Variant Calling BAM DeepVariant VCF Identify SNPs and
indels vs. reference

Annotation VCF VEP + ClinVar +
AlphaMissense Annotated VCF Add functional, clinical,

and pathogenicity data

Embedding Annotated VCF BGE-small-en-v1.5 Vectors (384-dim)
Convert variant
evidence to dense
embeddings

1.5.3 Variant Annotation

Variants are annotated from multiple sources:

• VEP (Variant Effect Predictor): Assigns functional consequences and impact levels — HIGH, MODERATE,
LOW, or MODIFIER.
• ClinVar: NCBI database of 4.1 million clinical variant interpretations (Pathogenic, Likely Pathogenic,
Benign, etc.).
• AlphaMissense: DeepMind model with 71,697,560 missense variant pathogenicity predictions.
Thresholds: pathogenic (>0.564), ambiguous (0.34-0.564), benign (<0.34).

1.5.4 Vector Embeddings and RAG

Annotated variants are converted to 384-dimensional dense vectors using the BGE-small-en-v1.5 embedding
model and stored in Milvus. Retrieval-Augmented Generation (RAG) queries Milvus for relevant genomic
evidence, then passes the results as context to Anthropic Claude for natural-language clinical interpretation.

1.5.5 Drug Discovery Pipeline

The 10-stage drug discovery pipeline transforms a genomic target into ranked drug candidates:

Stage Name Description

1 Initialize Load configuration, validate target gene
and variant

2 Normalize Target Map gene symbol to UniProt ID and
canonical name

3 Structure Discovery
Query RCSB PDB for 3D protein
structures, score by resolution and
method

4 Structure Preparation Download PDB files, extract binding site
coordinates

5 Molecule Generation
Generate SMILES candidates via
MolMIM NIM (Port 8001) using seed
molecule

6 Chemistry QC Filter by Lipinski Rule of Five (MW<=500,

LogP<=5, HBD<=5, HBA<=10)

7 Conformer Generation Generate 3D conformers with RDKit for
docking input

8 Molecular Docking Score binding affinity via DiffDock NIM
(Port 8002)

9 Composite Ranking Rank candidates: 30% generation + 40%
docking + 30% QED

10 Reporting Generate PDF report with structures,
scores, and recommendations

1.5.6 End-to-End Data Flow Summary
FASTQ (200 GB) ─► Parabricks fq2bam ─► BAM (100 GB) ─► DeepVariant ─► VCF (11.7M variants)
 ─► Annotation (ClinVar + AlphaMissense + VEP) ─► Milvus (384-dim vectors)
 ─► Claude RAG (variant interpretation) ─► Target Hypothesis
 ─► PDB Structure Retrieval ─► MolMIM (molecule generation)
 ─► DiffDock (molecular docking) ─► Composite Ranking ─► PDF Report

2. Architecture Overview

2.1 System Components

The HCLS AI Factory comprises three application pipeline stages running on a single DGX Spark:

Stage Name Function

Stage 1 Genomics Pipeline FASTQ alignment and variant calling with
GPU-accelerated Parabricks

Stage 2 RAG Chat Pipeline Variant annotation, vector embedding,
and Claude-powered conversational AI

Stage 3 Drug Discovery Pipeline Structure-aware molecule generation,
docking, and composite ranking

2.2 Technology Stack

Layer Technology Version / Details

Hardware NVIDIA DGX Spark GB10 GPU, 128 GB unified LPDDR5x, 144
ARM64 cores

OS DGX OS Ubuntu-based, ARM64 (aarch64)
Container Runtime Docker + NVIDIA Container Toolkit nvidia-docker runtime
Orchestration Docker Compose Multi-service deployment
Pipeline Orchestration Nextflow DSL2, multiple profiles
GPU Genomics NVIDIA Parabricks 4.6.0-1

Vector Database Milvus 2.4 (with etcd + MinIO)
Embedding Model BGE-small-en-v1.5 384 dimensions
LLM Anthropic Claude claude-sonnet-4-20250514
Molecule Generation BioNeMo MolMIM NIM 1.0
Molecular Docking BioNeMo DiffDock NIM 1.0
Cheminformatics RDKit Python library
Monitoring Grafana + Prometheus 10.2.2 / v2.48.0
GPU Monitoring DCGM Exporter Port 9400
Language Python 3.10+

2.3 Service Architecture

The platform deploys 14 services across 14 ports:

Service Port Protocol Description

1 Landing Page 8080 HTTP Platform entry point
and service directory

2 Genomics Portal 5000 HTTP Genomics pipeline UI
and results viewer

3 RAG API 5001 HTTP REST API for variant
queries and RAG

4 Milvus 19530 gRPC Vector database for
genomic evidence

5 Attu 8000 HTTP Milvus administration
UI

6 Streamlit Chat 8501 HTTP
Conversational AI
interface for variant
analysis

7 MolMIM NIM 8001 HTTP
BioNeMo molecule
generation
microservice

8 DiffDock NIM 8002 HTTP BioNeMo molecular
docking microservice

9 Discovery UI 8505 HTTP Drug discovery pipeline
interface

10 Discovery Portal 8510 HTTP Drug discovery results
and reporting portal

11 Grafana 3000 HTTP Monitoring dashboards

12 Prometheus 9099 HTTP Metrics collection and
storage

13 Node Exporter 9100 HTTP Host system metrics
14 DCGM Exporter 9400 HTTP NVIDIA GPU metrics

Infrastructure services (not externally exposed):

Service Port Purpose
etcd 2379 Milvus metadata store
MinIO 9000 Milvus object storage

2.4 Data Flow
┌───┐
│ HCLS AI Factory — Data Flow │
├───┤
│ │
│ FASTQ ──► Parabricks fq2bam ──► BAM ──► Parabricks DeepVariant ──► VCF │
│ (200 GB) (20-45 min) (100 GB) (10-35 min) (11.7M) │
│ │
│ VCF ──► ClinVar (4.1M) ──► AlphaMissense (71.7M) ──► VEP ──► Annotated │
│ (35,616 match) (6,831 matched) │
│ │
│ Annotated ──► BGE-small-en-v1.5 ──► Milvus (384-dim, IVF_FLAT) ──► │
│ (COSINE, nlist=1024) │
│ │
│ Milvus ──► Claude (sonnet-4) ──► Target Hypothesis │
│ (temp=0.3, 4096 tokens) │
│ │
│ Target ──► PDB Structures ──► MolMIM (8001) ──► Chemistry QC ──► │
│ (Lipinski + QED) │
│ │
│ Conformers ──► DiffDock (8002) ──► Composite Ranking ──► PDF Report │
│ (0.3*gen + 0.4*dock + 0.3*QED) │
│ │
└───┘

3. Prerequisites

3.1 Hardware Requirements

Component Specification
System NVIDIA DGX Spark
GPU GB10 Grace Blackwell Superchip
Memory 128 GB unified LPDDR5x
CPU 144 ARM64 cores
Architecture aarch64 (ARM64)
Price $3,999

Storage requirements:

Dataset / Component Size
GRCh38 Reference Genome 3.1 GB

FASTQ Input (HG002 30x WGS) ~200 GB
BAM Output (intermediate) ~100 GB
ClinVar Database ~1.2 GB
AlphaMissense Predictions ~4 GB
Milvus Index Data ~2 GB
BioNeMo Model Cache ~10 GB
Total Minimum ~320 GB
Recommended 1 TB NVMe

3.2 Software Requirements

Software Minimum Version Notes
DGX OS Latest Ubuntu-based ARM64
Docker Engine 24.0+ With Compose V2
NVIDIA Container Toolkit Latest nvidia-docker runtime
CUDA Toolkit 12.x Included with DGX OS
Python 3.10+ For pipeline scripts
Nextflow 23.04+ DSL2 support required
Git 2.30+ For repository clone
NGC CLI Latest For BioNeMo container pulls

3.3 Network Requirements

• Internet access for initial setup (container pulls, data downloads)
• Outbound HTTPS to api.anthropic.com for Claude API calls
• Outbound HTTPS to nvcr.io for NGC container registry
• Outbound HTTPS to NCBI, RCSB PDB for reference data downloads
• All service ports (listed in Section 2.3) accessible on localhost

3.4 Access Credentials

Credential Purpose How to Obtain
ANTHROPIC_API_KEY Claude API access https://console.anthropic.com
NGC_API_KEY NVIDIA NGC container registry https://ngc.nvidia.com

4. Environment Preparation

4.1 DGX Spark Initial Setup

Verify the system is a DGX Spark with the expected hardware:
 BASH

Verify ARM64 architecture
uname -m
Expected: aarch64

Verify CPU cores
nproc
Expected: 144

Verify total memory (128 GB)
free -h | grep Mem
Expected: ~128 GB total

Verify GPU is detected
nvidia-smi
Expected: GB10 GPU listed with driver version

4.2 NVIDIA Driver and CUDA Verification
 BASH
Check NVIDIA driver version
nvidia-smi --query-gpu=driver_version --format=csv,noheader
Expected: 550.x or later

Check CUDA version
nvcc --version
Expected: CUDA 12.x

Verify GPU compute capability
nvidia-smi --query-gpu=compute_cap --format=csv,noheader

Run a quick GPU test
nvidia-smi -q | head -30

4.3 Docker Installation and Configuration
 BASH
Verify Docker is installed
docker --version
Expected: Docker version 24.0+

Verify Docker Compose V2
docker compose version
Expected: Docker Compose version v2.x

Verify NVIDIA runtime is available
docker info | grep -i runtime
Expected: nvidia runtime listed

Test GPU access from a container
docker run --rm --gpus all nvidia/cuda:12.4.0-base-ubuntu22.04 nvidia-smi

Configure Docker daemon for NVIDIA runtime as default:

 BASH
sudo tee /etc/docker/daemon.json <<'EOF'
{
 "default-runtime": "nvidia",
 "runtimes": {
 "nvidia": {
 "path": "nvidia-container-runtime",
 "runtimeArgs": []
 }
 },
 "default-address-pools": [
 {"base": "172.20.0.0/16", "size": 24}
],
 "log-driver": "json-file",
 "log-opts": {
 "max-size": "50m",
 "max-file": "3"
 }
}
EOF

sudo systemctl restart docker

4.4 Python Environment Setup
 BASH
Verify Python version
python3 --version
Expected: Python 3.10+

Create virtual environment
python3 -m venv ~/hcls-env
source ~/hcls-env/bin/activate

Install core dependencies
pip install --upgrade pip
pip install \
 anthropic \
 pymilvus \
 sentence-transformers \
 rdkit-pypi \
 pydantic \
 streamlit \
 fastapi \
 uvicorn \
 requests \
 pandas \
 numpy \
 reportlab \
 biopython \
 nextflow

4.5 NGC CLI Installation
 BASH
Download NGC CLI for ARM64

wget -O ngc-cli.zip https://api.ngc.nvidia.com/v2/resources/nvidia/ngc-
apps/ngc_cli/versions/latest/files/ngccli_arm64.zip

Extract and install
unzip ngc-cli.zip -d ~/ngc-cli
chmod +x ~/ngc-cli/ngc-cli/ngc
export PATH=$PATH:~/ngc-cli/ngc-cli

Configure NGC CLI
ngc config set
Enter your NGC API key when prompted

Verify authentication
ngc registry image list --format_type csv | head -5

5. Repository Setup

5.1 Fork and Clone
 BASH
Fork the repository on GitHub, then clone your fork
git clone https://github.com/<your-username>/hcls-ai-factory.git
cd hcls-ai-factory

Verify repository structure
ls -la

5.2 Repository Layout

hcls-ai-factory/
├── docker-compose.yml # All 14 services + infrastructure
├── .env.example # Template environment configuration
├── nextflow.config # Nextflow pipeline configuration
├── main.nf # Nextflow DSL2 pipeline definition
├── start-services.sh # Service startup script
├── requirements.txt # Python dependencies
│
├── genomics/ # Stage 1: Genomics Pipeline
│ ├── parabricks/ # Parabricks configs and scripts
│ │ ├── fq2bam.sh # BWA-MEM2 alignment wrapper
│ │ └── deepvariant.sh # DeepVariant variant calling wrapper
│ ├── portal/ # Genomics Portal (Port 5000)
│ │ └── app.py
│ └── data/ # Input/output data directory
│ ├── reference/ # GRCh38 reference genome
│ ├── fastq/ # Input FASTQ files
│ ├── bam/ # Alignment output
│ └── vcf/ # Variant call output
│
├── rag/ # Stage 2: RAG Chat Pipeline
│ ├── api/ # RAG API (Port 5001)
│ │ └── app.py

│ ├── chat/ # Streamlit Chat (Port 8501)
│ │ └── app.py
│ ├── embeddings/ # BGE embedding pipeline
│ │ └── embed_variants.py
│ ├── annotation/ # Variant annotation pipeline
│ │ ├── clinvar.py
│ │ ├── alphamissense.py
│ │ └── vep.py
│ ├── knowledge/ # Gene knowledge base
│ │ └── genes.json # 201 genes, 13 therapeutic areas
│ └── data/
│ ├── clinvar/ # ClinVar database
│ └── alphamissense/ # AlphaMissense predictions
│
├── discovery/ # Stage 3: Drug Discovery Pipeline
│ ├── pipeline/ # 10-stage discovery pipeline
│ │ ├── __init__.py
│ │ ├── initialize.py # Stage 1: Initialize
│ │ ├── normalize.py # Stage 2: Normalize Target
│ │ ├── structure_discovery.py # Stage 3: Structure Discovery
│ │ ├── structure_prep.py # Stage 4: Structure Preparation
│ │ ├── molecule_gen.py # Stage 5: Molecule Generation
│ │ ├── chemistry_qc.py # Stage 6: Chemistry QC
│ │ ├── conformer_gen.py # Stage 7: Conformer Generation
│ │ ├── docking.py # Stage 8: Molecular Docking
│ │ ├── ranking.py # Stage 9: Composite Ranking
│ │ └── reporting.py # Stage 10: Reporting
│ ├── ui/ # Discovery UI (Port 8505)
│ │ └── app.py
│ ├── portal/ # Discovery Portal (Port 8510)
│ │ └── app.py
│ └── models/ # Pydantic data models
│ └── schemas.py
│
├── monitoring/ # Monitoring stack
│ ├── grafana/
│ │ ├── provisioning/
│ │ └── dashboards/
│ ├── prometheus/
│ │ └── prometheus.yml
│ └── exporters/
│
├── landing/ # Landing Page (Port 8080)
│ └── index.html
│
├── scripts/ # Utility scripts
│ ├── run_pipeline.py # Pipeline launcher
│ ├── download_references.sh # Reference data downloader
│ └── validate_deployment.sh # Deployment validator
│
└── docs/ # Documentation
 └── ...

5.3 Environment Configuration
 BASH
Copy the example environment file
cp .env.example .env

Edit with your credentials and paths
nano .env

The .env file should contain:
 BASH
=== API Keys ===
ANTHROPIC_API_KEY=sk-ant-api03-XXXXXXXXXXXX
NGC_API_KEY=XXXXXXXXXXXX

=== Model Configuration ===
CLAUDE_MODEL=claude-sonnet-4-20250514
CLAUDE_TEMPERATURE=0.3

=== Reference Data ===
REFERENCE_GENOME=/data/reference/GRCh38.fa

=== Milvus Configuration ===
MILVUS_HOST=localhost
MILVUS_PORT=19530

=== BioNeMo NIM URLs ===
MOLMIM_URL=http://localhost:8001
DIFFDOCK_URL=http://localhost:8002

=== Pipeline Configuration ===
PIPELINE_MODE=full
NUM_CANDIDATES=100
MIN_QED=0.67
MIN_DOCK_SCORE=-6.0

=== Monitoring ===
GRAFANA_USER=admin
GRAFANA_PASSWORD=changeme

5.4 Directory Structure for Data
 BASH
Create data directories
mkdir -p genomics/data/{reference,fastq,bam,vcf}
mkdir -p rag/data/{clinvar,alphamissense}
mkdir -p discovery/data/{structures,molecules,reports}
mkdir -p monitoring/data/{grafana,prometheus}

6. Reference Data Preparation

6.1 GRCh38 Reference Genome
 BASH
Download GRCh38 reference genome (~3.1 GB)
cd genomics/data/reference

wget
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines
.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz

Decompress
gunzip GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
mv GCA_000001405.15_GRCh38_no_alt_analysis_set.fna GRCh38.fa

Index the reference (required by Parabricks)
Note: Parabricks fq2bam can build its own index, but pre-building saves time
samtools faidx GRCh38.fa

Verify
ls -lh GRCh38.fa*
Expected: GRCh38.fa (~3.1 GB), GRCh38.fa.fai

6.2 ClinVar Database
 BASH
Download ClinVar VCF (~1.2 GB)
cd rag/data/clinvar

wget https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/clinvar.vcf.gz
wget https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/clinvar.vcf.gz.tbi

Verify record count (~4.1M clinical variants)
zcat clinvar.vcf.gz | grep -v '^#' | wc -l
Expected: ~4,100,000

echo "ClinVar download complete"

6.3 AlphaMissense Database
 BASH
Download AlphaMissense predictions (~4 GB)
cd rag/data/alphamissense

wget https://storage.googleapis.com/dm_alphamissense/AlphaMissense_hg38.tsv.gz

Verify record count (~71.7M predictions)
zcat AlphaMissense_hg38.tsv.gz | tail -n +5 | wc -l
Expected: ~71,697,560

echo "AlphaMissense download complete"

AlphaMissense pathogenicity thresholds:

Classification Score Range Description
Pathogenic > 0.564 Likely damaging to protein function
Ambiguous 0.34 - 0.564 Uncertain significance
Benign < 0.34 Likely tolerated

6.4 HG002 Sample Data
 BASH
Download HG002 FASTQ files for demo/testing (~200 GB)
cd genomics/data/fastq

GIAB HG002 30x WGS, 2x250 bp paired-end
Note: These are large files — ensure ~200 GB free space
wget ftp://ftp-
trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG002_NA24385_son/NIST_HiSeq_HG002_Homogenei
ty-10953946/NHGRI_Illumina300X_AJtrio_novoalign_bams/HG002.GRCh38.2x250.fastq.gz

For a smaller test subset, use a downsampled version if available
echo "HG002 download complete — verify file sizes match expected ~200 GB"
ls -lh *.fastq.gz

7. Docker Compose Configuration

7.1 Service Definition Overview

The docker-compose.yml defines all 14 application services plus 2 infrastructure services (etcd, MinIO) for
Milvus. Services are organized into three groups matching the pipeline stages, plus monitoring.

7.2 docker-compose.yml Structure
 YAML
version: '3.8'

services:
 # ─── Infrastructure ───────────────────────────────────────
 etcd:
 image: quay.io/coreos/etcd:v3.5.5
 environment:
 - ETCD_AUTO_COMPACTION_MODE=revision
 - ETCD_AUTO_COMPACTION_RETENTION=1000
 ports:
 - "2379:2379"
 volumes:

 - etcd_data:/etcd
 restart: unless-stopped

 minio:
 image: minio/minio:latest
 environment:
 MINIO_ACCESS_KEY: minioadmin
 MINIO_SECRET_KEY: minioadmin
 ports:
 - "9000:9000"
 volumes:
 - minio_data:/data
 command: server /data
 restart: unless-stopped

 # ─── Milvus Vector Database ──────────────────────────────
 milvus:
 image: milvusdb/milvus:v2.4-latest
 ports:
 - "19530:19530"
 environment:
 ETCD_ENDPOINTS: etcd:2379
 MINIO_ADDRESS: minio:9000
 depends_on:
 - etcd
 - minio
 volumes:
 - milvus_data:/var/lib/milvus
 restart: unless-stopped

 attu:
 image: zilliz/attu:latest
 ports:
 - "8000:3000"
 environment:
 MILVUS_URL: milvus:19530
 depends_on:
 - milvus
 restart: unless-stopped

 # ─── Stage 1: Genomics ──────────────────────────────────
 genomics-portal:
 build: ./genomics/portal
 ports:
 - "5000:5000"
 volumes:
 - ./genomics/data:/data
 environment:
 - REFERENCE_GENOME=/data/reference/GRCh38.fa
 restart: unless-stopped

 # ─── Stage 2: RAG Chat ──────────────────────────────────
 rag-api:
 build: ./rag/api
 ports:
 - "5001:5001"
 environment:
 - ANTHROPIC_API_KEY=${ANTHROPIC_API_KEY}
 - CLAUDE_MODEL=${CLAUDE_MODEL}
 - CLAUDE_TEMPERATURE=${CLAUDE_TEMPERATURE}

 - MILVUS_HOST=milvus
 - MILVUS_PORT=19530
 depends_on:
... (121 more lines)

7.3 Infrastructure Services

Milvus 2.4 requires two backend services:

Service Image Port Purpose
etcd quay.io/coreos/etcd:v3.5.5 2379 Metadata storage for Milvus

MinIO minio/minio:latest 9000 Object storage for Milvus
segments

Milvus milvusdb/milvus:v2.4-latest 19530 Vector database

7.4 Volume Mounts and Data Paths

Volume Container Path Host Purpose
./genomics/data /data Reference genome, FASTQ, BAM, VCF
./rag/data /data ClinVar, AlphaMissense databases
etcd_data /etcd Milvus metadata persistence
minio_data /data Milvus segment persistence
milvus_data /var/lib/milvus Milvus index persistence
prometheus_data /prometheus Prometheus TSDB
grafana_data /var/lib/grafana Grafana state and dashboards

7.5 GPU Resource Allocation

The GB10 GPU is shared across GPU-consuming services. Only one GPU-heavy workload should run at a time:

Service GPU Usage Peak Memory Typical Duration
Parabricks fq2bam 70-90% GPU ~40 GB 20-45 min
Parabricks DeepVariant 80-95% GPU ~60 GB 10-35 min
MolMIM NIM Moderate ~8 GB Always running
DiffDock NIM Moderate ~8 GB Always running
DCGM Exporter Minimal Minimal Always running

8. Deploy Genomics Pipeline (Stage 1)

8.1 Parabricks Container Setup
 BASH
Pull Parabricks container for ARM64
docker pull nvcr.io/nvidia/clara/clara-parabricks:4.6.0-1

Verify the image
docker images | grep parabricks
Expected: clara-parabricks 4.6.0-1

8.2 BWA-MEM2 Alignment (fq2bam)

The fq2bam tool performs GPU-accelerated read alignment using BWA-MEM2 and produces a sorted, duplicate-
marked BAM file.
 BASH
docker run --rm --gpus all \
 -v $(pwd)/genomics/data:/data \
 nvcr.io/nvidia/clara/clara-parabricks:4.6.0-1 \
 pbrun fq2bam \
 --ref /data/reference/GRCh38.fa \
 --in-fq /data/fastq/HG002_R1.fastq.gz /data/fastq/HG002_R2.fastq.gz \
 --out-bam /data/bam/HG002.bam \
 --num-gpus 1

Expected performance:

Metric Value
Runtime 20-45 minutes
GPU Utilization 70-90%
Peak GPU Memory ~40 GB
Output Sorted, duplicate-marked BAM (~100 GB)

8.3 DeepVariant Variant Calling
 BASH
docker run --rm --gpus all \
 -v $(pwd)/genomics/data:/data \
 nvcr.io/nvidia/clara/clara-parabricks:4.6.0-1 \
 pbrun deepvariant \
 --ref /data/reference/GRCh38.fa \
 --in-bam /data/bam/HG002.bam \
 --out-variants /data/vcf/HG002.vcf.gz \
 --num-gpus 1

Expected performance:

Metric Value
Runtime 10-35 minutes
GPU Utilization 80-95%
Peak GPU Memory ~60 GB
Output Compressed VCF (gzipped)

8.4 VCF Output Verification
 BASH
Count total variants
zcat genomics/data/vcf/HG002.vcf.gz | grep -v '^#' | wc -l
Expected: ~11,700,000 (11.7M variants)

Count PASS variants with QUAL > 30
zcat genomics/data/vcf/HG002.vcf.gz | grep -v '^#' | \
 awk '$7 == "PASS" && $6 > 30' | wc -l
Expected: ~3,500,000 (3.5M)

Count SNPs vs Indels
zcat genomics/data/vcf/HG002.vcf.gz | grep -v '^#' | \
 awk '{if(length($4)==1 && length($5)==1) print "SNP"; else print "INDEL"}' | \
 sort | uniq -c
Expected: ~4,200,000 SNPs, ~1,000,000 indels

VCF output summary:

Metric Expected Value
Total variants ~11.7M
PASS variants (QUAL > 30) ~3.5M
SNPs ~4.2M
Indels ~1.0M
Coding region variants ~35,000

8.5 Genomics Portal (Port 5000)

After genomics processing, start the portal:
 BASH
docker compose up -d genomics-portal

Verify
curl -s http://localhost:5000/health
Expected: {"status": "healthy"}

Access the Genomics Portal at http://<dgx-spark-ip>:5000 to browse VCF results.

8.6 Performance Benchmarks

Step Wall Time GPU Util Peak Memory Output Size
fq2bam (alignment) 20-45 min 70-90% ~40 GB ~100 GB BAM
DeepVariant (calling) 10-35 min 80-95% ~60 GB ~1 GB VCF.gz
Total Stage 1 30-80 min — — —

9. Deploy RAG Chat Pipeline (Stage 2)

9.1 Milvus Vector Database Setup
 BASH
Start Milvus and its dependencies
docker compose up -d etcd minio milvus attu

Wait for Milvus to be ready (30-60 seconds)
sleep 30

Verify Milvus is running
curl -s http://localhost:19530/v1/health/ready
Expected: {"status":"ok"}

Verify Attu UI
curl -s -o /dev/null -w "%{http_code}" http://localhost:8000
Expected: 200

9.2 Collection Schema

Create the genomic_evidence collection with 17 fields:
 PYTHON
from pymilvus import connections, Collection, FieldSchema, CollectionSchema, DataType, utility

Connect to Milvus
connections.connect(host="localhost", port=19530)

Define schema with 17 fields
fields = [
 FieldSchema(name="id", dtype=DataType.INT64, is_primary=True, auto_id=True),
 FieldSchema(name="embedding", dtype=DataType.FLOAT_VECTOR, dim=384),
 FieldSchema(name="chrom", dtype=DataType.VARCHAR, max_length=10),
 FieldSchema(name="pos", dtype=DataType.INT64),
 FieldSchema(name="ref", dtype=DataType.VARCHAR, max_length=500),
 FieldSchema(name="alt", dtype=DataType.VARCHAR, max_length=500),
 FieldSchema(name="qual", dtype=DataType.FLOAT),
 FieldSchema(name="gene", dtype=DataType.VARCHAR, max_length=100),
 FieldSchema(name="consequence", dtype=DataType.VARCHAR, max_length=200),
 FieldSchema(name="impact", dtype=DataType.VARCHAR, max_length=20),
 FieldSchema(name="genotype", dtype=DataType.VARCHAR, max_length=10),
 FieldSchema(name="text_summary", dtype=DataType.VARCHAR, max_length=5000),

 FieldSchema(name="clinical_significance", dtype=DataType.VARCHAR, max_length=200),
 FieldSchema(name="rsid", dtype=DataType.VARCHAR, max_length=20),
 FieldSchema(name="disease_associations", dtype=DataType.VARCHAR, max_length=2000),
 FieldSchema(name="am_pathogenicity", dtype=DataType.FLOAT),
 FieldSchema(name="am_class", dtype=DataType.VARCHAR, max_length=20),
]

schema = CollectionSchema(fields, description="Genomic evidence for RAG")
collection = Collection("genomic_evidence", schema)

Create IVF_FLAT index on embedding field
index_params = {
 "metric_type": "COSINE",
 "index_type": "IVF_FLAT",
 "params": {"nlist": 1024}
}
collection.create_index("embedding", index_params)

Load collection into memory
collection.load()

print(f"Collection created: {collection.name}")
print(f"Schema fields: {len(fields)}")

Collection schema reference:

Field Type Details
1 id INT64 Primary key, auto-generated

2 embedding FLOAT_VECTOR 384 dimensions (BGE-small-
en-v1.5)

3 chrom VARCHAR(10) Chromosome (chr1-22, chrX,
chrY)

4 pos INT64 Genomic position
5 ref VARCHAR(500) Reference allele
6 alt VARCHAR(500) Alternate allele
7 qual FLOAT Variant quality score
8 gene VARCHAR(100) Gene symbol
9 consequence VARCHAR(200) VEP functional consequence

10 impact VARCHAR(20) HIGH, MODERATE, LOW,
MODIFIER

11 genotype VARCHAR(10) Sample genotype (e.g., 0/1,
1/1)

12 text_summary VARCHAR(5000) Natural-language variant
summary

13 clinical_significance VARCHAR(200) ClinVar classification
14 rsid VARCHAR(20) dbSNP identifier

15 disease_associations VARCHAR(2000) Associated
diseases/conditions

16 am_pathogenicity FLOAT AlphaMissense score (0.0-
1.0)

17 am_class VARCHAR(20) pathogenic, ambiguous, or

benign

9.3 Variant Annotation Pipeline

The annotation pipeline enriches VCF variants with data from three sources:
 BASH
Run the annotation pipeline
python3 rag/annotation/clinvar.py \
 --vcf genomics/data/vcf/HG002.vcf.gz \
 --clinvar rag/data/clinvar/clinvar.vcf.gz \
 --output rag/data/annotated_clinvar.tsv

python3 rag/annotation/alphamissense.py \
 --vcf genomics/data/vcf/HG002.vcf.gz \
 --am rag/data/alphamissense/AlphaMissense_hg38.tsv.gz \
 --output rag/data/annotated_am.tsv

python3 rag/annotation/vep.py \
 --vcf genomics/data/vcf/HG002.vcf.gz \
 --output rag/data/annotated_vep.tsv

Expected annotation matches:

Source Total Records Patient Matches
ClinVar 4,100,000 ~35,616

AlphaMissense 71,697,560 ~6,831 (ClinVar-matched with
predictions)

VEP Per-variant All coding variants

9.4 BGE Embedding and Indexing
 PYTHON
from sentence_transformers import SentenceTransformer
from pymilvus import connections, Collection

Load embedding model
model = SentenceTransformer('BAAI/bge-small-en-v1.5') # 384 dimensions

Connect to Milvus
connections.connect(host="localhost", port=19530)
collection = Collection("genomic_evidence")

Example: embed and insert a variant
text = "chr9:35065263 G>A in VCP gene. ClinVar: Pathogenic. AlphaMissense: 0.87 (pathogenic). Consequence:
missense_variant. Impact: MODERATE."
embedding = model.encode(text).tolist() # 384-dim vector

Insert into Milvus
data = [{
 "embedding": embedding,
 "chrom": "chr9",
 "pos": 35065263,

 "ref": "G",
 "alt": "A",
 "qual": 99.0,
 "gene": "VCP",
 "consequence": "missense_variant",
 "impact": "MODERATE",
 "genotype": "0/1",
 "text_summary": text,
 "clinical_significance": "Pathogenic",
 "rsid": "rs188935092",
 "disease_associations": "Inclusion body myopathy with Paget disease and frontotemporal dementia",
 "am_pathogenicity": 0.87,
 "am_class": "pathogenic"
}]

collection.insert(data)
collection.flush()

Milvus index configuration:

Parameter Value
Embedding Model BGE-small-en-v1.5
Dimensions 384
Index Type IVF_FLAT
Metric Type COSINE
nlist 1024
nprobe (search) 16

9.5 Anthropic Claude Integration
 PYTHON
import anthropic

client = anthropic.Anthropic(api_key=os.environ["ANTHROPIC_API_KEY"])

def query_claude(question: str, context: str) -> str:
 """Send RAG query to Claude with retrieved genomic context."""
 response = client.messages.create(
 model="claude-sonnet-4-20250514",
 max_tokens=4096,
 temperature=0.3,
 messages=[{
 "role": "user",
 "content": f"""You are a genomics expert. Answer the question using the provided genomic
evidence.

Context:
{context}

Question: {question}"""
 }]
)
 return response.content[0].text

Claude configuration:

Parameter Value
Model claude-sonnet-4-20250514
Temperature 0.3
Max Tokens 4096

9.6 Knowledge Base

The platform includes a curated knowledge base of 201 genes across 13 therapeutic areas, with 171 genes (85%)
classified as druggable.

Metric Value
Total genes 201
Therapeutic areas 13
Druggable genes 171 (85%)

9.7 RAG API and Streamlit Chat
 BASH
Start RAG API and Chat services
docker compose up -d rag-api streamlit-chat

Verify RAG API
curl -s http://localhost:5001/health
Expected: {"status": "healthy"}

Verify Streamlit Chat
curl -s -o /dev/null -w "%{http_code}" http://localhost:8501
Expected: 200

Access the Streamlit Chat at http://<dgx-spark-ip>:8501 for conversational variant analysis.

10. Deploy Drug Discovery Pipeline (Stage 3)

10.1 BioNeMo NIM Services
 BASH
Pull BioNeMo containers (requires NGC authentication)
docker pull nvcr.io/nvidia/clara/bionemo-molmim:1.0
docker pull nvcr.io/nvidia/clara/diffdock:1.0

Start NIM services
docker compose up -d molmim diffdock

Wait for models to load (may take 2-5 minutes)
sleep 120

Verify MolMIM
curl -s http://localhost:8001/v1/health/ready
Expected: {"status": "ready"}

Verify DiffDock
curl -s http://localhost:8002/v1/health/ready
Expected: {"status": "ready"}

10.2 10-Stage Pipeline Detail

Stage Name Input Output Key Operations

1 Initialize Config + target gene PipelineConfig Validate parameters,
create run ID

2 Normalize Target Gene symbol Normalized target Map to UniProt,
canonical name

3 Structure Discovery UniProt ID PDB structure list Query RCSB PDB, score
by resolution

4 Structure Preparation PDB IDs Prepared structures Download PDB, extract
binding sites

5 Molecule Generation Seed SMILES + protein Generated SMILES MolMIM NIM (Port
8001)

6 Chemistry QC SMILES list Filtered SMILES Lipinski, QED, TPSA
checks

7 Conformer Generation Filtered SMILES 3D conformers (SDF) RDKit conformer
embedding

8 Molecular Docking Conformers + protein Docking scores DiffDock NIM (Port
8002)

9 Composite Ranking All scores Ranked candidates Weighted composite
formula

10 Reporting Ranked candidates PDF report Visualizations,
recommendations

10.3 Structure Retrieval and Scoring
 PYTHON
import requests

def search_pdb_structures(uniprot_id: str) -> list:
 """Search RCSB PDB for protein structures by UniProt ID."""
 url = "https://search.rcsb.org/rcsbsearch/v2/query"
 query = {
 "query": {
 "type": "terminal",
 "service": "text",
 "parameters": {
 "attribute":
"rcsb_polymer_entity_container_identifiers.reference_sequence_identifiers.database_accession",
 "operator": "exact_match",
 "value": uniprot_id

 }
 },
 "return_type": "entry"
 }
 response = requests.post(url, json=query)
 return response.json().get("result_set", [])

10.4 Molecule Generation (MolMIM)
 PYTHON
import requests

def generate_molecules(seed_smiles: str, num_candidates: int = 100) -> list:
 """Generate molecule candidates using MolMIM NIM."""
 response = requests.post(
 "http://localhost:8001/generate",
 json={
 "smiles": seed_smiles,
 "num_molecules": num_candidates,
 "algorithm": "CMA-ES",
 "property_name": "QED",
 "min_similarity": 0.3,
 "particles": 30,
 "iterations": 10
 }
)
 return response.json()["generated_molecules"]

10.5 Molecular Docking (DiffDock)
 PYTHON
def dock_molecule(protein_pdb: str, ligand_sdf: str) -> dict:
 """Score binding affinity using DiffDock NIM."""
 response = requests.post(
 "http://localhost:8002/molecular-docking/diffdock/generate",
 json={
 "protein": protein_pdb,
 "ligand": ligand_sdf,
 "num_poses": 10
 }
)
 return response.json()

10.6 Drug-Likeness Scoring

Drug-likeness is assessed using three criteria:

Lipinski Rule of Five:

Property Threshold Description
Molecular Weight <= 500 Da Size constraint
LogP <= 5 Lipophilicity
H-Bond Donors (HBD) <= 5 Polar surface groups

H-Bond Acceptors (HBA) <= 10 Polar surface groups

Additional thresholds:

Metric Threshold Interpretation
QED > 0.67 Drug-like
TPSA < 140 Angstrom squared Good oral bioavailability

 PYTHON
from rdkit import Chem
from rdkit.Chem import Descriptors, QED

def assess_drug_likeness(smiles: str) -> dict:
 """Evaluate drug-likeness using Lipinski, QED, and TPSA."""
 mol = Chem.MolFromSmiles(smiles)
 if mol is None:
 return {"valid": False}

 mw = Descriptors.MolWt(mol)
 logp = Descriptors.MolLogP(mol)
 hbd = Descriptors.NumHDonors(mol)
 hba = Descriptors.NumHAcceptors(mol)
 tpsa = Descriptors.TPSA(mol)
 qed_score = QED.qed(mol)

 lipinski_pass = (mw <= 500 and logp <= 5 and hbd <= 5 and hba <= 10)

 return {
 "valid": True,
 "mw": mw,
 "logp": logp,
 "hbd": hbd,
 "hba": hba,
 "tpsa": tpsa,
 "qed": qed_score,
 "lipinski_pass": lipinski_pass,
 "drug_like": qed_score > 0.67,
 "oral_bioavail": tpsa < 140
 }

10.7 Composite Ranking Formula

Candidates are ranked using a weighted composite score:

composite = 0.30 * generation_score + 0.40 * docking_score_normalized + 0.30 * qed_score

Docking score normalization:
 PYTHON
def normalize_docking_score(dock_score: float) -> float:
 """Normalize docking score to [0, 1] range.
 More negative = better binding = higher normalized score."""
 return max(0.0, min(1.0, (10.0 + dock_score) / 20.0))

Raw Docking Score Normalized Score Interpretation
-10.0 kcal/mol 0.00 Excellent binding
-8.0 kcal/mol 0.10 Strong binding
-6.0 kcal/mol 0.20 Moderate binding
0.0 kcal/mol 0.50 Weak binding
+10.0 kcal/mol 1.00 No binding

Note: The normalization maps more negative (better) docking scores to lower normalized values. In the composite
formula, the docking component rewards lower (better) scores.

Composite score weights:

Component Weight Source
Generation Score 30% MolMIM similarity/property score
Docking Score (normalized) 40% DiffDock binding affinity
QED Score 30% RDKit quantitative drug-likeness

10.8 Discovery UI and Portal
 BASH
Start Discovery services
docker compose up -d discovery-ui discovery-portal

Verify Discovery UI
curl -s -o /dev/null -w "%{http_code}" http://localhost:8505
Expected: 200

Verify Discovery Portal
curl -s -o /dev/null -w "%{http_code}" http://localhost:8510
Expected: 200

• Discovery UI (Port 8505): Interactive pipeline execution interface
• Discovery Portal (Port 8510): Results browser and reporting portal

10.9 PDF Report Generation

The final pipeline stage generates a PDF report containing:

• Target gene and variant summary
• PDB structure details with binding site analysis
• Top-ranked candidates with SMILES, scores, and 2D depictions
• Docking poses and binding affinity plots
• Lipinski and QED compliance table
• Composite score ranking

11. Nextflow Orchestration

11.1 DSL2 Pipeline Architecture

The HCLS AI Factory uses Nextflow DSL2 for pipeline orchestration. Each pipeline stage is defined as a separate
process, with channels connecting inputs and outputs.

11.2 Pipeline Modes

Mode Description Stages Executed
full Complete end-to-end pipeline 1 + 2 + 3 (all stages)
target Start from target gene (skip genomics) 2 + 3
drug Drug discovery only (pre-existing target) 3 only
demo VCP demo with pre-loaded data 1 + 2 + 3 (demo subset)
genomics_only Genomics pipeline only 1 only

11.3 Execution Profiles

Profile Description Use Case
standard Local execution, default settings Development
docker Docker container execution Standard deployment
singularity Singularity container execution HPC environments
dgx_spark Optimized for DGX Spark hardware Production on DGX Spark
slurm SLURM workload manager Multi-node clusters
test Minimal test data, fast execution CI/CD testing

11.4 Pipeline Launcher
 BASH
Run with the pipeline launcher script
python3 scripts/run_pipeline.py \
 --mode full \
 --profile dgx_spark \
 --fastq genomics/data/fastq/ \
 --reference genomics/data/reference/GRCh38.fa

Or run directly with Nextflow
nextflow run main.nf \
 -profile dgx_spark \
 --mode full \
 --fastq_dir genomics/data/fastq/ \
 --reference genomics/data/reference/GRCh38.fa \
 --outdir results/

11.5 Pipeline Configuration
 GROOVY
// nextflow.config
params {
 // Pipeline mode
 mode = 'full'

 // Input paths
 fastq_dir = 'genomics/data/fastq'
 reference = 'genomics/data/reference/GRCh38.fa'
 outdir = 'results'

 // Service endpoints
 milvus_host = 'localhost'
 milvus_port = 19530
 molmim_url = 'http://localhost:8001'
 diffdock_url = 'http://localhost:8002'

 // Drug discovery parameters
 num_candidates = 100
 min_qed = 0.67
 min_dock_score = -6.0
}

profiles {
 dgx_spark {
 docker.enabled = true
 docker.runOptions = '--gpus all'
 process {
 executor = 'local'
 memory = '120 GB'
 cpus = 128
 }
 }

 test {
 params.mode = 'demo'
 process {
 memory = '16 GB'
 cpus = 4
 }
 }
}

12. Service Startup and Health

12.1 start-services.sh Startup Order

Services should be started in dependency order:
 BASH
#!/bin/bash
start-services.sh — Start all HCLS AI Factory services

set -e

echo "Starting infrastructure services..."
docker compose up -d etcd minio
sleep 10

echo "Starting Milvus..."
docker compose up -d milvus attu
sleep 30

echo "Starting BioNeMo NIM services..."
docker compose up -d molmim diffdock
sleep 120

echo "Starting application services..."
docker compose up -d genomics-portal rag-api streamlit-chat discovery-ui discovery-portal landing-page

echo "Starting monitoring..."
docker compose up -d prometheus grafana node-exporter dcgm-exporter

echo "All services started. Running health checks..."
sleep 10
bash scripts/validate_deployment.sh

12.2 Landing Page (Port 8080)

The landing page at http://<dgx-spark-ip>:8080 provides a directory of all services with links and status
indicators.

12.3 Health Check Endpoints

Service Port Health Endpoint Expected Response
Genomics Portal 5000 /health {"status": "healthy"}
RAG API 5001 /health {"status": "healthy"}
Milvus 19530 /v1/health/ready {"status": "ok"}
Attu 8000 /api/health HTTP 200
Streamlit Chat 8501 /healthz HTTP 200
MolMIM NIM 8001 /v1/health/ready {"status": "ready"}
DiffDock NIM 8002 /v1/health/ready {"status": "ready"}
Discovery UI 8505 /health {"status": "healthy"}
Discovery Portal 8510 /health {"status": "healthy"}
Grafana 3000 /api/health {"status": "ok"}
Prometheus 9099 /-/healthy HTTP 200
Node Exporter 9100 /metrics Metrics text
DCGM Exporter 9400 /metrics Metrics text

12.4 Verifying All Services
 BASH
#!/bin/bash
validate_deployment.sh — Verify all services are running

declare -A SERVICES=(
 ["Landing Page"]="http://localhost:8080"
 ["Genomics Portal"]="http://localhost:5000/health"
 ["RAG API"]="http://localhost:5001/health"
 ["Milvus"]="http://localhost:19530/v1/health/ready"
 ["Attu"]="http://localhost:8000"
 ["Streamlit Chat"]="http://localhost:8501/healthz"
 ["MolMIM"]="http://localhost:8001/v1/health/ready"
 ["DiffDock"]="http://localhost:8002/v1/health/ready"
 ["Discovery UI"]="http://localhost:8505/health"
 ["Discovery Portal"]="http://localhost:8510/health"
 ["Grafana"]="http://localhost:3000/api/health"
 ["Prometheus"]="http://localhost:9099/-/healthy"
 ["Node Exporter"]="http://localhost:9100/metrics"
 ["DCGM Exporter"]="http://localhost:9400/metrics"
)

echo "=== HCLS AI Factory Health Check ==="
for service in "${!SERVICES[@]}"; do
 url="${SERVICES[$service]}"
 status=$(curl -s -o /dev/null -w "%{http_code}" "$url" 2>/dev/null || echo "ERR")
 if ["$status" == "200"]; then
 echo "[OK] $service ($url)"
 else
 echo "[FAIL] $service ($url) — HTTP $status"
 fi
done

13. Monitoring and Observability

13.1 Grafana Setup (Port 3000)
 BASH
Start Grafana
docker compose up -d grafana

Access at http://<dgx-spark-ip>:3000
Default credentials: admin / changeme

Default Grafana credentials:

Parameter Value
Username admin
Password changeme

13.2 Prometheus Configuration (Port 9099)
 YAML
monitoring/prometheus/prometheus.yml
global:
 scrape_interval: 15s

scrape_configs:
 - job_name: 'node-exporter'
 static_configs:
 - targets: ['node-exporter:9100']

 - job_name: 'dcgm-exporter'
 static_configs:
 - targets: ['dcgm-exporter:9400']

 - job_name: 'rag-api'
 static_configs:
 - targets: ['rag-api:5001']
 metrics_path: /metrics

 - job_name: 'prometheus'
 static_configs:
 - targets: ['localhost:9090']

13.3 DCGM Exporter (Port 9400)

Key GPU metrics exposed by the DCGM Exporter:

Metric Description
DCGM_FI_DEV_GPU_UTIL GPU utilization percentage
DCGM_FI_DEV_FB_USED GPU framebuffer memory used (MB)
DCGM_FI_DEV_FB_FREE GPU framebuffer memory free (MB)
DCGM_FI_DEV_GPU_TEMP GPU temperature (Celsius)
DCGM_FI_DEV_POWER_USAGE Power consumption (Watts)
DCGM_FI_DEV_SM_CLOCK Streaming multiprocessor clock (MHz)
DCGM_FI_DEV_MEM_CLOCK Memory clock (MHz)

13.4 Node Exporter (Port 9100)

The Node Exporter provides host system metrics — CPU, memory, disk, and network utilization — critical for
monitoring the DGX Spark ARM64 system.

13.5 Key Dashboard Panels

Recommended Grafana dashboard panels:

Panel Data Source Purpose

GPU Utilization DCGM Track fq2bam and DeepVariant GPU
usage

GPU Memory DCGM Monitor peak memory during genomics
CPU Utilization Node Exporter ARM64 core usage across 144 cores
Memory Usage Node Exporter Unified 128 GB LPDDR5x utilization

Disk I/O Node Exporter NVMe throughput for FASTQ/BAM
processing

Network I/O Node Exporter API call throughput
Container Status Docker Service health overview

13.6 Alert Configuration
 YAML
Example alert rules for Prometheus
groups:
 - name: hcls-alerts
 rules:
 - alert: GPUMemoryHigh
 expr: DCGM_FI_DEV_FB_USED / (DCGM_FI_DEV_FB_USED + DCGM_FI_DEV_FB_FREE) > 0.95
 for: 5m
 labels:
 severity: warning
 annotations:
 summary: "GPU memory usage above 95%"

 - alert: ServiceDown
 expr: up == 0
 for: 2m
 labels:
 severity: critical
 annotations:
 summary: "Service {{ $labels.job }} is down"

14. Security Configuration

14.1 API Key Management
 BASH
Store API keys in .env file (not committed to git)
echo ".env" >> .gitignore

Set restrictive permissions
chmod 600 .env

Verify .env is in .gitignore
grep -q '.env' .gitignore && echo "OK: .env is gitignored"

Never commit API keys to version control. Use environment variables exclusively:

Variable Sensitivity Storage
ANTHROPIC_API_KEY High .env file, chmod 600
NGC_API_KEY High .env file, chmod 600
GRAFANA_PASSWORD Medium .env file

14.2 Docker Network Isolation

Docker Compose creates an isolated bridge network. Only explicitly exposed ports are accessible from the host:
 BASH
Verify network isolation
docker network ls | grep hcls
docker network inspect hcls-ai-factory_default

14.3 Container Security

Best practices applied to the deployment:

• Run application containers as non-root users where possible
• Use read-only filesystem mounts for reference data
• Limit container capabilities with --cap-drop ALL
• Pin container image versions (no latest tags in production)

14.4 Data Access Controls
 BASH
Set appropriate permissions on data directories
chmod -R 750 genomics/data/
chmod -R 750 rag/data/
chmod -R 750 discovery/data/

Ensure only the deployment user can access sensitive data
chown -R $(whoami):$(whoami) genomics/data/ rag/data/ discovery/data/

15. Data Management

15.1 Storage Layout

Directory Contents Size Persistence
genomics/data/reference/ GRCh38 genome 3.1 GB Permanent
genomics/data/fastq/ Input FASTQ files ~200 GB Keep until processed
genomics/data/bam/ Alignment output ~100 GB Delete after VCF

genomics/data/vcf/ Variant calls ~1 GB Permanent
rag/data/clinvar/ ClinVar database ~1.2 GB Permanent
rag/data/alphamissense/ AlphaMissense DB ~4 GB Permanent
milvus_data (Docker volume) Vector index ~2 GB Permanent
discovery/data/ Structures, molecules Variable Per-run

15.2 Intermediate File Cleanup

BAM files are the largest intermediate output (~100 GB). Once the VCF has been verified, BAM files can be
deleted to reclaim storage:
 BASH
Verify VCF is complete before deleting BAM
zcat genomics/data/vcf/HG002.vcf.gz | grep -v '^#' | wc -l
Confirm ~11.7M variants

Delete intermediate BAM
rm -f genomics/data/bam/HG002.bam genomics/data/bam/HG002.bam.bai
echo "Reclaimed ~100 GB"

15.3 Milvus Data Persistence

Milvus data is stored in Docker volumes. To back up:
 BASH
Stop Milvus for consistent backup
docker compose stop milvus

Back up volumes
docker run --rm \
 -v hcls-ai-factory_milvus_data:/data \
 -v $(pwd)/backups:/backup \
 alpine tar czf /backup/milvus_data_$(date +%Y%m%d).tar.gz /data

Restart
docker compose start milvus

15.4 Backup Procedures
 BASH
Full backup script
#!/bin/bash
BACKUP_DIR=./backups/$(date +%Y%m%d)
mkdir -p $BACKUP_DIR

Back up VCF results
cp -r genomics/data/vcf/ $BACKUP_DIR/vcf/

Back up environment config (without secrets)
grep -v 'API_KEY' .env > $BACKUP_DIR/env_sanitized.txt

Back up Milvus volumes
docker compose stop milvus
for vol in milvus_data etcd_data minio_data; do
 docker run --rm \
 -v hcls-ai-factory_${vol}:/data \
 -v $(pwd)/$BACKUP_DIR:/backup \
 alpine tar czf /backup/${vol}.tar.gz /data
done
docker compose start milvus

echo "Backup complete: $BACKUP_DIR"

16. Performance Tuning

16.1 GPU Memory Management

The DGX Spark uses 128 GB unified LPDDR5x memory shared between CPU and GPU. Key considerations:

• Parabricks DeepVariant peaks at ~60 GB GPU memory — ensure other GPU services are idle during
genomics processing
• MolMIM and DiffDock each require ~8 GB — they can co-exist during drug discovery
• Monitor with nvidia-smi and DCGM metrics during pipeline runs

 BASH
Monitor GPU memory in real-time
watch -n 1 nvidia-smi

Check unified memory allocation
nvidia-smi --query-gpu=memory.used,memory.free,memory.total --format=csv

16.2 Milvus Index Tuning

Parameter Default Tuning Guidance

nlist 1024 Increase for larger collections (trade
build time for search quality)

nprobe 16 Increase for higher recall (trade latency
for accuracy)

metric_type COSINE Use COSINE for normalized BGE
embeddings

 PYTHON
Search with tuned parameters
search_params = {
 "metric_type": "COSINE",
 "params": {"nprobe": 16}
}

results = collection.search(
 data=[query_embedding],
 anns_field="embedding",
 param=search_params,
 limit=10,
 output_fields=["gene", "clinical_significance", "text_summary"]
)

16.3 Docker Resource Limits
 YAML
Example resource limits in docker-compose.yml
services:
 rag-api:
 deploy:
 resources:
 limits:
 memory: 16G
 cpus: '16'
 reservations:
 memory: 4G
 cpus: '4'

16.4 NVMe I/O Optimization

For FASTQ and BAM processing, I/O throughput is critical:
 BASH
Check NVMe performance
fio --name=seqread --rw=read --bs=1M --size=1G --numjobs=4 --runtime=10 --group_reporting

Ensure data directories are on NVMe
df -h genomics/data/

16.5 Pipeline Concurrency Settings

The Nextflow pipeline supports controlled concurrency:
 GROOVY
// nextflow.config — concurrency settings
process {
 maxForks = 4 // Maximum parallel processes
 maxRetries = 2 // Retry failed processes
 errorStrategy = 'retry'
}

executor {
 queueSize = 8 // Maximum queued tasks
 pollInterval = '5 sec'
}

17. Troubleshooting Guide

17.1 Service Not Starting
 BASH
Check service logs
docker compose logs <service-name> --tail 50

Check if port is already in use
ss -tlnp | grep <port>

Restart a specific service
docker compose restart <service-name>

17.2 GPU Out of Memory
 BASH
Check current GPU memory usage
nvidia-smi

Kill any orphaned GPU processes
sudo fuser -v /dev/nvidia*

Reduce Parabricks memory by limiting GPU threads
Add --gpu-mem-limit flag if available

Ensure NIM services are stopped during genomics
docker compose stop molmim diffdock

17.3 Milvus Connection Issues
 BASH
Verify Milvus dependencies are running
docker compose ps etcd minio milvus

Check Milvus logs for errors
docker compose logs milvus --tail 100

Test connectivity
curl -s http://localhost:19530/v1/health/ready

Reset Milvus if corrupted
docker compose down milvus etcd minio
docker volume rm hcls-ai-factory_milvus_data hcls-ai-factory_etcd_data hcls-ai-factory_minio_data
docker compose up -d etcd minio milvus

17.4 BioNeMo NIM Not Ready
 BASH
NIM services may take 2-5 minutes to load models
Check logs for model loading progress
docker compose logs molmim --tail 50
docker compose logs diffdock --tail 50

Verify GPU is available for NIM
nvidia-smi | grep -i "molmim\|diffdock"

Restart if stuck
docker compose restart molmim diffdock

17.5 Parabricks Failures

Error Cause Resolution
CUDA out of memory Insufficient GPU memory Stop other GPU services first
Reference index not found Missing .fai file Run samtools faidx GRCh38.fa
Input file not found Wrong FASTQ path Check volume mount paths
Unsupported GPU Driver mismatch Update NVIDIA driver

17.6 Claude API Errors

Error Cause Resolution
401 Unauthorized Invalid API key Verify ANTHROPIC_API_KEY in .env
429 Rate Limited Too many requests Implement exponential backoff
500 Server Error Anthropic service issue Retry after 30 seconds
Connection refused No internet Check network connectivity

17.7 Docker Issues
 BASH
Docker daemon not running
sudo systemctl start docker
sudo systemctl enable docker

Disk space full
docker system prune -a --volumes
df -h /var/lib/docker

Permission denied
sudo usermod -aG docker $USER
newgrp docker

17.8 Common Error Messages Table

Error Message Service Resolution
Connection refused on port
19530 Milvus Start etcd + MinIO first, then Milvus

NVIDIA driver not found Docker Install NVIDIA Container Toolkit
Model not loaded MolMIM/DiffDock Wait 2-5 minutes for model loading
Collection not found Milvus Run schema creation script (Section 9.2)
API key not set RAG API Set ANTHROPIC_API_KEY in .env

Out of disk space Parabricks Clean BAM intermediates, expand
storage

Permission denied: /data Any Check volume mount permissions

18. VCP/FTD Demo Walkthrough

18.1 Demo Overview

The VCP (Valosin-Containing Protein) / FTD (Frontotemporal Dementia) demo showcases the full three-stage
pipeline using a known pathogenic variant:

Parameter Value
Variant rs188935092
Location chr9:35065263 G>A
Gene VCP
ClinVar Classification Pathogenic
AlphaMissense Score 0.87 (pathogenic, threshold >0.564)
Disease Inclusion body myopathy with Paget disease and FTD
Seed Molecule CB-5083 (VCP/p97 inhibitor)
PDB Structures 8OOI, 9DIL, 7K56, 5FTK
Binding Domain D2 ATPase domain, ~450 cubic angstroms
Druggability Score 0.92

18.2 Pre-Demo Setup
 BASH
Ensure all services are running
bash scripts/validate_deployment.sh

Verify Milvus has the VCP variant loaded
python3 -c "
from pymilvus import connections, Collection
connections.connect(host='localhost', port=19530)
col = Collection('genomic_evidence')

col.load()
results = col.query('gene == \"VCP\"', output_fields=['rsid', 'clinical_significance', 'am_pathogenicity'])
print(f'VCP variants found: {len(results)}')
for r in results[:3]:
 print(r)
"

18.3 Running the Demo
 BASH
Run the demo pipeline mode
python3 scripts/run_pipeline.py --mode demo

Or via Nextflow
nextflow run main.nf -profile dgx_spark --mode demo

Step-by-step execution:

1. Stage 1 (Genomics): Process demo FASTQ subset through Parabricks fq2bam and DeepVariant
2. Stage 2 (RAG): Annotate VCP variant with ClinVar (Pathogenic) and AlphaMissense (0.87), embed into
Milvus, query Claude for clinical interpretation
3. Stage 3 (Drug Discovery): Retrieve PDB structures (8OOI, 9DIL, 7K56, 5FTK), generate molecules from CB-
5083 seed via MolMIM, dock with DiffDock, rank by composite score

18.4 Expected Results

Metric Expected Value
Candidates generated 100
Pass Lipinski Rule of Five 87
QED > 0.67 (drug-like) 72
Top docking scores -8.2 to -11.4 kcal/mol
Composite score range 0.68 - 0.89

Top candidate characteristics:

Property Range
Molecular Weight 300 - 500 Da
LogP 1.5 - 4.5
QED 0.67 - 0.92
TPSA 40 - 130 squared angstroms
Docking Score -8.2 to -11.4 kcal/mol
Composite Score 0.68 - 0.89

19. Scaling Beyond DGX Spark

19.1 Phase 1 to Phase 3 Roadmap

Phase Hardware Scale Use Case

Phase 1 DGX Spark Single workstation Development, demos, single-
patient analysis

Phase 2 DGX B200 Single server, multi-GPU Production cohort analysis
Phase 3 DGX SuperPOD Multi-node cluster Population-scale genomics

19.2 Kubernetes Migration Path

For Phase 2 and beyond, migrate from Docker Compose to Kubernetes:

• Replace docker-compose.yml with Helm charts
• Use NVIDIA GPU Operator for GPU scheduling
• Deploy Milvus Cluster mode (distributed) instead of standalone
• Use persistent volume claims (PVCs) for data storage
• Implement horizontal pod autoscaling for RAG API

19.3 Multi-GPU Considerations

• Parabricks supports --num-gpus for multi-GPU parallelism
• MolMIM and DiffDock can be replicated across GPUs
• Milvus supports distributed deployment with multiple query nodes

19.4 NVIDIA FLARE for Federated Learning

For multi-institutional deployments, NVIDIA FLARE enables federated learning across DGX Spark nodes without
sharing raw patient data.

20. Appendix A: Complete Configuration Reference

20.1 All Environment Variables

Variable Default Description
ANTHROPIC_API_KEY (required) Anthropic API key for Claude
NGC_API_KEY (required) NVIDIA NGC API key
REFERENCE_GENOME /data/reference/GRCh38.fa Path to reference genome
MILVUS_HOST localhost Milvus server hostname
MILVUS_PORT 19530 Milvus server port
MOLMIM_URL http://localhost:8001 MolMIM NIM endpoint

DIFFDOCK_URL http://localhost:8002 DiffDock NIM endpoint
CLAUDE_MODEL claude-sonnet-4-20250514 Claude model identifier
CLAUDE_TEMPERATURE 0.3 Claude sampling temperature
PIPELINE_MODE full Pipeline execution mode
NUM_CANDIDATES 100 Number of molecules to generate
MIN_QED 0.67 Minimum QED threshold
MIN_DOCK_SCORE -6.0 Minimum docking score (kcal/mol)
GRAFANA_USER admin Grafana admin username
GRAFANA_PASSWORD changeme Grafana admin password

20.2 AlphaMissense Thresholds

Classification Score Range
Pathogenic > 0.564
Ambiguous 0.34 - 0.564
Benign < 0.34

20.3 Scoring Weights

Component Weight
Generation Score 0.30 (30%)
Docking Score (normalized) 0.40 (40%)
QED Score 0.30 (30%)

20.4 Drug-Likeness Thresholds

Property Threshold Rule
Molecular Weight <= 500 Da Lipinski
LogP <= 5 Lipinski
H-Bond Donors <= 5 Lipinski
H-Bond Acceptors <= 10 Lipinski
QED > 0.67 Drug-likeness
TPSA < 140 squared angstroms Oral bioavailability

20.5 Docking Score Interpretation

Score (kcal/mol) Binding Affinity Assessment
< -10.0 Excellent Strong candidate
-8.0 to -10.0 Strong Viable candidate
-6.0 to -8.0 Moderate Marginal candidate

> -6.0 Weak Poor candidate

Normalization formula:

normalized = max(0, min(1, (10 + dock_score) / 20))

21. Appendix B: API Reference

21.1 MolMIM API (Port 8001)

Generate Molecules:
 JSON
// POST http://localhost:8001/generate
// Request:
{
 "smiles": "CC1=CC=C(C=C1)C(=O)NC2=CC=CC=C2",
 "num_molecules": 100,
 "algorithm": "CMA-ES",
 "property_name": "QED",
 "min_similarity": 0.3,
 "particles": 30,
 "iterations": 10
}

// Response:
{
 "generated_molecules": [
 {
 "smiles": "CC1=CC=C(C=C1)C(=O)NC2=CC=C(F)C=C2",
 "score": 0.85,
 "similarity": 0.78
 }
]
}

Health Check:

GET http://localhost:8001/v1/health/ready
Response: {"status": "ready"}

21.2 DiffDock API (Port 8002)

Molecular Docking:
 JSON
// POST http://localhost:8002/molecular-docking/diffdock/generate
// Request:
{
 "protein": "<PDB file content>",

 "ligand": "<SDF file content>",
 "num_poses": 10
}

// Response:
{
 "poses": [
 {
 "pose_id": 0,
 "confidence": 0.95,
 "score": -9.7,
 "ligand_sdf": "<docked SDF content>"
 }
]
}

Health Check:

GET http://localhost:8002/v1/health/ready
Response: {"status": "ready"}

21.3 RAG API Endpoints (Port 5001)

Method Endpoint Description
GET /health Service health check
POST /query RAG query with context retrieval
POST /search Vector similarity search
GET /collections List Milvus collections
GET /stats Collection statistics

RAG Query Example:
 JSON
// POST http://localhost:5001/query
// Request:
{
 "question": "What pathogenic variants are found in the VCP gene?",
 "top_k": 10,
 "filters": {
 "gene": "VCP",
 "impact": "HIGH"
 }
}

// Response:
{
 "answer": "The VCP gene contains the variant rs188935092...",
 "sources": [
 {
 "gene": "VCP",
 "rsid": "rs188935092",
 "clinical_significance": "Pathogenic",
 "am_pathogenicity": 0.87,
 "similarity_score": 0.94
 }

],
 "model": "claude-sonnet-4-20250514",
 "tokens_used": 1847
}

21.4 Health Check Endpoints Summary

Service Endpoint Method
Genomics Portal /health GET
RAG API /health GET
Milvus /v1/health/ready GET
Attu /api/health GET
Streamlit Chat /healthz GET
MolMIM /v1/health/ready GET
DiffDock /v1/health/ready GET
Discovery UI /health GET
Discovery Portal /health GET
Grafana /api/health GET
Prometheus /-/healthy GET
Node Exporter /metrics GET
DCGM Exporter /metrics GET

22. Appendix C: Schema Definitions

22.1 Milvus Collection Schema

Collection: `genomic_evidence`

Field Data Type Constraints Description
1 id INT64 Primary Key, Auto ID Unique record identifier
2 embedding FLOAT_VECTOR dim=384 BGE-small-en-v1.5 embedding
3 chrom VARCHAR max_length=10 Chromosome (chr1-22, chrX, chrY)
4 pos INT64 — Genomic position (1-based)
5 ref VARCHAR max_length=500 Reference allele
6 alt VARCHAR max_length=500 Alternate allele
7 qual FLOAT — Variant quality score
8 gene VARCHAR max_length=100 HGNC gene symbol
9 consequence VARCHAR max_length=200 VEP consequence term
10 impact VARCHAR max_length=20 HIGH/MODERATE/LOW/MODIFIER
11 genotype VARCHAR max_length=10 Sample genotype (0/1, 1/1)
12 text_summary VARCHAR max_length=5000 Natural-language summary

13 clinical_significance VARCHAR max_length=200 ClinVar classification
14 rsid VARCHAR max_length=20 dbSNP RS identifier
15 disease_associations VARCHAR max_length=2000 Associated diseases
16 am_pathogenicity FLOAT 0.0-1.0 AlphaMissense pathogenicity
17 am_class VARCHAR max_length=20 pathogenic/ambiguous/benign

Index configuration:

Parameter Value
Index Type IVF_FLAT
Metric Type COSINE
nlist 1024
nprobe (search) 16

22.2 Pydantic Data Models
 PYTHON
from pydantic import BaseModel, Field
from typing import List, Optional
from enum import Enum

class TargetHypothesis(BaseModel):
 """Genomic target identified from variant analysis."""
 gene: str
 variant_id: str
 rsid: Optional[str]
 clinical_significance: str
 am_pathogenicity: Optional[float]
 am_class: Optional[str]
 therapeutic_area: str
 druggability_score: float
 rationale: str

class StructureInfo(BaseModel):
 """PDB structure information for a target protein."""
 pdb_id: str
 resolution: float
 method: str
 chain: str
 binding_site_volume: Optional[float]

class StructureManifest(BaseModel):
 """Collection of structures for a target."""
 target_gene: str
 uniprot_id: str
 structures: List[StructureInfo]
 selected_structure: str

class MoleculeProperties(BaseModel):
 """Chemical properties of a generated molecule."""
 molecular_weight: float
 logp: float
 hbd: int
 hba: int

 tpsa: float
 qed: float
 lipinski_pass: bool

class GeneratedMolecule(BaseModel):
 """Molecule generated by MolMIM."""
 smiles: str
 generation_score: float
 similarity_to_seed: float
 properties: MoleculeProperties

class DockingResult(BaseModel):
 """Molecular docking result from DiffDock."""
 smiles: str
 dock_score: float # kcal/mol (negative = better)
 confidence: float
 pose_sdf: str

class RankedCandidate(BaseModel):
 """Final ranked drug candidate with composite score."""
 rank: int
 smiles: str
 generation_score: float
 dock_score: float
 dock_score_normalized: float
 qed: float
 composite_score: float # 0.3*gen + 0.4*dock + 0.3*qed
 lipinski_pass: bool
 properties: MoleculeProperties

class PipelineConfig(BaseModel):
 """Configuration for a pipeline run."""
 mode: str = "full"
 target_gene: Optional[str]
 seed_smiles: Optional[str]
 num_candidates: int = 100
 min_qed: float = 0.67
 min_dock_score: float = -6.0
... (16 more lines)

23. Appendix D: Docker Image Reference

23.1 All Container Images

Service Image Tag Architecture

Parabricks nvcr.io/nvidia/clara/clara-
parabricks 4.6.0-1 ARM64 (aarch64)

Milvus milvusdb/milvus v2.4-latest ARM64

MolMIM nvcr.io/nvidia/clara/bionemo-
molmim 1.0 ARM64

DiffDock nvcr.io/nvidia/clara/diffdock 1.0 ARM64

Grafana grafana/grafana 10.2.2 ARM64
Prometheus prom/prometheus v2.48.0 ARM64
Node Exporter prom/node-exporter latest ARM64

DCGM Exporter nvcr.io/nvidia/k8s/dcgm-
exporter latest ARM64

etcd quay.io/coreos/etcd v3.5.5 ARM64
MinIO minio/minio latest ARM64
Attu zilliz/attu latest ARM64

23.2 ARM64 Compatibility Notes

The DGX Spark uses an ARM64 (aarch64) processor. All container images must be ARM64-compatible:

• NVIDIA NGC images for Parabricks, BioNeMo, and DCGM include ARM64 variants
• Community images (Grafana, Prometheus, MinIO, etcd) provide multi-arch manifests
• Custom application images must be built with --platform linux/arm64
• If building locally, ensure the base image supports ARM64

 BASH
Verify image architecture
docker inspect --format='{{.Architecture}}' <image-name>
Expected: arm64

Build for ARM64 explicitly
docker build --platform linux/arm64 -t my-service:latest ./my-service/

24. Appendix E: Validation Checklists

24.1 Pre-Deployment Checklist

Item Command / Check Expected

1 DGX Spark
hardware uname -m aarch64

2 GPU detected nvidia-smi GB10 GPU
listed

3 Docker installed docker --version 24.0+

4 Docker Compose
V2

docker compose version v2.x

5 NVIDIA runtime `docker info \ grep nvidia` nvidia listed
6 Python version python3 --version 3.10+

7 Disk space df -h / >= 320 GB
free

8 Reference
genome ls genomics/data/reference/GRCh38.fa File exists,

~3.1 GB

9 ClinVar data ls rag/data/clinvar/clinvar.vcf.gz File exists,

~1.2 GB

10 AlphaMissense
data

ls
rag/data/alphamissense/AlphaMissense_hg38.tsv.gz

File exists, ~4
GB

11 API keys
configured

grep ANTHROPIC_API_KEY .env Key set (not
empty)

12 NGC key
configured grep NGC_API_KEY .env Key set (not

empty)

13 .env permissions stat -c %a .env 600

14 .env in .gitignore grep .env .gitignore Present

24.2 Post-Deployment Checklist

Item Command / Check Expected

1 All containers
running docker compose ps 14+ services "Up"

2 Landing Page curl http://localhost:8080 HTTP 200
3 Genomics Portal curl http://localhost:5000/health {"status":"healthy"}
4 RAG API curl http://localhost:5001/health {"status":"healthy"}
5 Milvus ready curl http://localhost:19530/v1/health/ready {"status":"ok"}

6 Attu UI curl -o /dev/null -w "%{http_code}"
http://localhost:8000 200

7 Streamlit Chat curl -o /dev/null -w "%{http_code}"
http://localhost:8501 200

8 MolMIM ready curl http://localhost:8001/v1/health/ready {"status":"ready"}
9 DiffDock ready curl http://localhost:8002/v1/health/ready {"status":"ready"}
10 Discovery UI curl http://localhost:8505/health {"status":"healthy"}
11 Discovery Portal curl http://localhost:8510/health {"status":"healthy"}
12 Grafana curl http://localhost:3000/api/health {"status":"ok"}
13 Prometheus curl http://localhost:9099/-/healthy HTTP 200
14 DCGM metrics curl http://localhost:9400/metrics Metrics text

15 Milvus collection Python:
Collection("genomic_evidence").num_entities > 0

24.3 Demo Readiness Checklist

Item Check Expected

1 All services healthy Run
validate_deployment.sh All [OK]

2 VCP variant in Milvus Query gene="VCP" rs188935092 found
3 ClinVar annotation VCP classification Pathogenic
4 AlphaMissense score VCP am_pathogenicity 0.87
5 PDB structures accessible Query RCSB for VCP 8OOI, 9DIL, 7K56, 5FTK
6 MolMIM generates Test generation from CB- Molecules returned

5083

7 DiffDock docks Test docking against VCP
structure Scores returned

8 Claude responds Test RAG query about VCP Coherent response
9 Grafana dashboards Login at port 3000 Dashboards visible
10 GPU metrics flowing Check DCGM in Grafana GPU util, memory shown

25. Appendix F: Glossary

25.1 Genomics Terms

Term Definition

FASTQ Text-based format for storing nucleotide sequences and
quality scores

BAM Binary Alignment Map — compressed format for aligned
sequencing reads

VCF Variant Call Format — standard format for genomic variants
SNP Single Nucleotide Polymorphism — single base-pair variant
Indel Insertion or deletion of nucleotides in the genome
WGS Whole Genome Sequencing — sequencing of entire genome

GRCh38 Genome Reference Consortium Human Build 38 — current
reference genome

GIAB Genome in a Bottle — NIST benchmark samples (e.g., HG002)
ClinVar NCBI database of clinically relevant genomic variants
VEP Variant Effect Predictor — functional annotation tool
AlphaMissense DeepMind model predicting missense variant pathogenicity

Paired-end Sequencing both ends of a DNA fragment for improved
alignment

Coverage (30x) Average number of reads covering each position in the
genome

25.2 ML/AI Terms

Term Definition

RAG Retrieval-Augmented Generation — combining search with
LLM generation

Embedding Dense vector representation of text or data

BGE BAAI General Embedding — sentence transformer model
family

IVF_FLAT Inverted File Index — approximate nearest neighbor search
method

COSINE Cosine similarity — metric for comparing vector directions
NIM NVIDIA Inference Microservice — containerized model serving
LLM Large Language Model — e.g., Claude
Vector Database Database optimized for similarity search on dense vectors
nlist Number of clusters in IVF index (build-time parameter)
nprobe Number of clusters to search at query time (recall vs. latency)

25.3 Drug Discovery Terms

Term Definition

SMILES Simplified Molecular Input Line Entry System — text notation
for molecules

PDB Protein Data Bank — repository of 3D protein structures

Molecular Docking Computational prediction of ligand-protein binding pose and
affinity

QED Quantitative Estimate of Drug-likeness — composite drug-
likeness score (0-1)

Lipinski Rule of Five Empirical rules predicting oral bioavailability

TPSA Topological Polar Surface Area — predictor of membrane
permeability

LogP Partition coefficient — measure of lipophilicity
HBD / HBA Hydrogen Bond Donors / Acceptors
Conformer 3D spatial arrangement of a molecule's atoms

Binding Affinity Strength of interaction between a drug molecule and its target
protein

kcal/mol Kilocalories per mole — unit for binding energy (more negative
= stronger)

MolMIM Molecule generation model from NVIDIA BioNeMo
DiffDock Diffusion-based molecular docking model

Druggability Assessment of whether a protein target can be modulated by
a small molecule

CB-5083 VCP/p97 inhibitor used as seed molecule in the VCP demo
RDKit Open-source cheminformatics toolkit for molecular analysis

This deployment guide is maintained as part of the HCLS AI Factory open-source project. For updates, issues, and
contributions, visit the project repository on GitHub.

HCLS AI Factory — Apache 2.0 | Author: Adam Jones | February 2026

