Open-Source Project

Deployment Guide

HCLS Al Factory

Deployment and Configuration Guide
for NVIDIA DGX Spark

Open-Source Precision Medicine Platform
on NVIDIA DGX Spark

02/2026 | Version 1.0 | Apache 2.0 License

Author: Adam Jones

Table of Contents

O 00 N OO U1 A W N =

N N N N N N R R R R R R R R R R
v A W N B O O 0N OO A W N » O

. Introduction

. Architecture Overview

. Prerequisites

. Environment Preparation

. Repository Setup

. Reference Data Preparation

. Docker Compose Configuration

. Deploy Genomics Pipeline (Stage 1)
. Deploy RAG Chat Pipeline (Stage 2)

. Deploy Drug Discovery Pipeline (Stage 3)
. Nextflow Orchestration

. Service Startup and Health

. Monitoring and Observability

. Security Configuration

. Data Management

. Performance Tuning

. Troubleshooting Guide

. VCP/FTD Demo Walkthrough

. Scaling Beyond DGX Spark

. Appendix A: Complete Configuration Reference
. Appendix B: APl Reference

. Appendix C: Schema Definitions

. Appendix D: Docker Image Reference

. Appendix E: Validation Checklists

. Appendix F: Glossary

1. Introduction

1.1 Purpose

This document provides step-by-step instructions for deploying the HCLS Al Factory on an NVIDIA DGX Spark
workstation. It covers all three pipeline stages — genomics, RAG-powered variant intelligence, and Al-driven
drug discovery — using exclusively open-source and publicly available components.

1.2 Scope

The guide addresses hardware validation, software installation, container deployment, data preparation,
pipeline execution, monitoring, security, and troubleshooting. It targets the open-source fork of the HCLS Al
Factory that runs entirely on Docker Compose without requiring VAST Data, Kubernetes, or multi-node
infrastructure.

1.3 Audience

e Bioinformatics Engineers deploying genomics pipelines on DGX Spark
e ML/AI Engineers integrating RAG and BioNeMo NIM microservices
e DevOps Engineers managing containerized service stacks

* Researchers forking the project for their own precision medicine workflows

1.4 Document Conventions

Convention Meaning

monospace Commands, file paths, code
Bold Ul elements, key terms

Italic Variable values to be replaced
$VARIABLE Environment variable
<placeholder> User-supplied value

1.5 Genomics and Drug Discovery Primer

This section provides essential background for engineers who may not have a biology or chemistry background.

1.5.1 DNA Sequencing

DNA sequencing reads the order of nucleotide bases (A, T, C, G) in an organism's genome. Modern short-read
sequencers (e.g., lllumina) produce paired-end reads — two sequences from opposite ends of a DNA fragment.
The standard demo sample HG002 is a 30x whole-genome sequencing (WGS) dataset with 2x250 bp paired-end
reads, producing approximately 200 GB of FASTQ data.

1.5.2 Genomics Pipeline Stages

Stage Input

Quality Control FASTQ

Alignment FASTQ + Reference
Variant Calling BAM

Annotation VCF

Embedding Annotated VCF

1.5.3 Variant Annotation

Tool

FastQC

DeepVariant

VEP + ClinVar +
AlphaMissense

BGE-small-en-v1.5

Variants are annotated from multiple sources:

BWA-MEM?2 (fg2bam)

Output Description
Assess read quality and
QC Report -
adapter contamination
Map reads to GRCh38
BAM
reference genome
Identify SNPs and
VCF

indels vs. reference

Add functional, clinical,

Annotated VCF

Vectors (384-dim)

and pathogenicity data
Convert variant
evidence to dense
embeddings

* VEP (Variant Effect Predictor): Assigns functional consequences and impact levels — HIGH, MODERATE,

LOW, or MODIFIER.

e ClinVar: NCBI database of 4.1 million clinical variant interpretations (Pathogenic, Likely Pathogenic,

Benign, etc.).

¢ AlphaMissense: DeepMind model with 71,697,560 missense variant pathogenicity predictions.
Thresholds: pathogenic (>0.564), ambiguous (0.34-0.564), benign (<0.34).

1.5.4 Vector Embeddings and RAG

Annotated variants are converted to 384-dimensional dense vectors using the BGE-small-en-v1.5 embedding

model and stored in Milvus. Retrieval-Augmented Generation (RAG) queries Milvus for relevant genomic

evidence, then passes the results as context to Anthropic Claude for natural-language clinical interpretation.

1.5.5 Drug Discovery Pipeline

The 10-stage drug discovery pipeline transforms a genomic target into ranked drug candidates:

Stage

1

Name

Initialize

Normalize Target

Structure Discovery

Structure Preparation

Molecule Generation

Chemistry QC

Description

Load configuration, validate target gene
and variant

Map gene symbol to UniProt ID and
canonical name

Query RCSB PDB for 3D protein
structures, score by resolution and
method

Download PDB files, extract binding site
coordinates

Generate SMILES candidates via
MolMIM NIM (Port 8001) using seed
molecule

Filter by Lipinski Rule of Five (MW<=500,

LogP<=5, HBD<=5, HBA<=10)

Generate 3D conformers with RDKit for

7 Conformer Generation L

docking input

. Score binding affinity via DiffDock NIM

8 Molecular Docking

(Port 8002)

. . Rank candidates: 30% generation + 40%

9 Composite Ranking .

docking + 30% QED

. Generate PDF report with structures,

10 Reporting

scores, and recommendations

1.5.6 End-to-End Data Flow Summary

FASTQ (200 GB) — Parabricks fqg2bam — BAM (100 GB) — DeepVariant — VCF (11.7M variants)
— Annotation (ClinVar + AlphaMissense + VEP) — Milvus (384-dim vectors)
— Claude RAG (variant interpretation) — Target Hypothesis
— PDB Structure Retrieval — MolMIM (molecule generation)
— DiffDock (molecular docking) — Composite Ranking — PDF Report

2. Architecture Overview

2.1 System Components

The HCLS Al Factory comprises three application pipeline stages running on a single DGX Spark:

Stage Name Function
o FASTQ alignment and variant calling with
Stage 1 Genomics Pipeline .
GPU-accelerated Parabricks
o Variant annotation, vector embedding,
Stage 2 RAG Chat Pipeline .
and Claude-powered conversational Al
. o Structure-aware molecule generation,
Stage 3 Drug Discovery Pipeline . . .
docking, and composite ranking
2.2 Technology Stack
Layer Technology Version / Details
GB10 GPU, 128 GB unified LPDDR5x, 144
Hardware NVIDIA DGX Spark
ARMG64 cores
oS DGX OS Ubuntu-based, ARM64 (aarch64)
Container Runtime Docker + NVIDIA Container Toolkit nvidia-docker runtime
Orchestration Docker Compose Multi-service deployment
Pipeline Orchestration Nextflow DSL2, multiple profiles

GPU Genomics NVIDIA Parabricks 4.6.0-1

Vector Database
Embedding Model
LLM

Molecule Generation
Molecular Docking
Cheminformatics
Monitoring

GPU Monitoring

Language

2.3 Service Architecture

Milvus
BGE-small-en-v1.5
Anthropic Claude
BioNeMo MolMIM NIM
BioNeMo DiffDock NIM
RDKit

Grafana + Prometheus
DCGM Exporter

Python

The platform deploys 14 services across 14 ports:

#

10

11

12

13
14

Service

Landing Page

Genomics Portal

RAG API

Milvus

Attu

Streamlit Chat

MolMIM NIM

DiffDock NIM

Discovery Ul

Discovery Portal
Grafana
Prometheus

Node Exporter

DCGM Exporter

Port

8080

5000

5001

19530

8000

8501

8001

8002

8505

8510

3000

9099

9100
9400

Protocol

HTTP

HTTP

HTTP

gRPC

HTTP

HTTP

HTTP

HTTP

HTTP

HTTP
HTTP
HTTP

HTTP
HTTP

2.4 (with etcd + MinlQO)
384 dimensions
claude-sonnet-4-20250514
1.0

1.0

Python library

10.2.2 /v2.48.0

Port 9400

3.10+

Description

Platform entry point
and service directory
Genomics pipeline Ul
and results viewer
REST API for variant
queries and RAG
Vector database for
genomic evidence
Milvus administration

ul

Conversational Al
interface for variant
analysis

BioNeMo molecule
generation
microservice

BioNeMo molecular
docking microservice

Drug discovery pipeline
interface

Drug discovery results
and reporting portal

Monitoring dashboards

Metrics collection and
storage

Host system metrics

NVIDIA GPU metrics

Infrastructure services (not externally exposed):

Service Port Purpose
etcd 2379 Milvus metadata store
MinlO 9000 Milvus object storage

2.4 Data Flow

HCLS AI Factory — Data Flow

FASTQ —» Parabricks fgq2bam —> BAM —» Parabricks DeepVariant —» VCF
(200 GB) (20-45 min) (100 GB) (10-35 min) (11.7M)

VCF — ClinVar (4.1M) — AlphaMissense (71.7M) — VEP — Annotated
(35,616 match) (6,831 matched)

Annotated —> BGE-small-en-v1.5 —»= Milvus (384-dim, IVF_FLAT) —»
(COSINE, nlist=1024)

Milvus —» Claude (sonnet-4) — Target Hypothesis
(temp=0.3, 4096 tokens)

Target — PDB Structures —» MolMIM (8001) — Chemistry QC —
(Lipinski + QED)

Conformers —» DiffDock (8002) —» Composite Ranking —» PDF Report
(0.3*gen + 0.4*dock + @.3*QED)

3. Prerequisites

3.1 Hardware Requirements

Component Specification

System NVIDIA DGX Spark

GPU GB10 Grace Blackwell Superchip
Memory 128 GB unified LPDDR5x

CPU 144 ARM64 cores

Architecture aarch64 (ARM64)

Price $3,999

Storage requirements:

Dataset / Component Size

GRCh38 Reference Genome 3.1GB

FASTQ Input (HG002 30x WGS) ~200 GB

BAM Output (intermediate) ~100 GB
ClinVar Database ~1.2GB
AlphaMissense Predictions ~4 GB
Milvus Index Data ~2 GB
BioNeMo Model Cache ~10 GB
Total Minimum ~320 GB
Recommended 1TB NVMe

3.2 Software Requirements

Software Minimum Version Notes

DGX OS Latest Ubuntu-based ARM64
Docker Engine 24.0+ With Compose V2

NVIDIA Container Toolkit Latest nvidia-docker runtime

CUDA Toolkit 12.x Included with DGX OS
Python 3.10+ For pipeline scripts
Nextflow 23.04+ DSL2 support required

Git 2.30+ For repository clone

NGC CLI Latest For BioNeMo container pulls

3.3 Network Requirements

e Internet access for initial setup (container pulls, data downloads)

e Outbound HTTPS to api.anthropic.comfor Claude API calls

e Qutbound HTTPS to nvcr.io for NGC container registry

e OQutbound HTTPS to NCBI, RCSB PDB for reference data downloads

* All service ports (listed in Section 2.3) accessible on localhost

3.4 Access Credentials

Credential Purpose How to Obtain
ANTHROPIC_API_KEY Claude API access https://console.anthropic.com
NGC_API_KEY NVIDIA NGC container registry https://ngc.nvidia.com

4. Environment Preparation

4.1 DGX Spark Initial Setup

Verify the system is a DGX Spark with the expected hardware:
BASH

Verify ARM64 architecture
uname -m
Expected: aarché64

Verify CPU cores
nproc
Expected: 144

Verify total memory (128 GB)
free -h | grep Mem
Expected: ~128 GB total

Verify GPU is detected
nvidia-smi
Expected: GB10 GPU listed with driver version

4.2 NVIDIA Driver and CUDA Verification

BASH

Check NVIDIA driver version
nvidia-smi --query-gpu=driver_version --format=csv,noheader
Expected: 550.x or later

Check CUDA version
nvcc --version
Expected: CUDA 12.x

Verify GPU compute capability
nvidia-smi --query-gpu=compute_cap --format=csv,noheader

Run a quick GPU test
nvidia-smi -q | head -30

4.3 Docker Installation and Configuration

BASH

Verify Docker is installed
docker --version
Expected: Docker version 24.0+

Verify Docker Compose V2
docker compose version
Expected: Docker Compose version v2.x

Verify NVIDIA runtime is available
docker info | grep -i runtime
Expected: nvidia runtime listed

Test GPU access from a container
docker run --rm --gpus all nvidia/cuda:12.4.0-base-ubuntu22.04 nvidia-smi

Configure Docker daemon for NVIDIA runtime as default:

BASH

sudo tee /etc/docker/daemon.json <<'EOF'

{

"default-runtime": "nvidia",
"runtimes": {
"nvidia": {
"path": "nvidia-container-runtime",
"runtimeArgs": []
X
}J

"default-address-pools": [
{"base": "172.20.0.0/16", "size": 24}

1,
"log-driver": "json-file",
"log-opts": {
"max-size": "5em",
"max-file": "3"
3
¥
EOF

sudo systemctl restart docker

4.4 Python Environment Setup

BASH

Verify Python version
python3 --version
Expected: Python 3.10+

Create virtual environment
python3 -m venv ~/hcls-env
source ~/hcls-env/bin/activate

Install core dependencies
pip install --upgrade pip
pip install \

anthropic \

pymilvus \

sentence-transformers \

rdkit-pypi \

pydantic \

streamlit \

fastapi \

uvicorn \

requests \

pandas \

numpy \

reportlab \

biopython \

nextflow

4.5 NGC CLI Installation

BASH
| # Download NGC CLI for ARM64

wget -0 ngc-cli.zip https://api.ngc.nvidia.com/v2/resources/nvidia/ngc-
apps/ngc_cli/versions/latest/files/ngccli_armé4.zip

Extract and install

unzip ngc-cli.zip -d ~/ngc-cli
chmod +x ~/ngc-cli/ngc-cli/ngc
export PATH=$PATH:~/ngc-cli/ngc-cli

Configure NGC CLI
ngc config set
Enter your NGC API key when prompted

Verify authentication
ngc registry image list --format_type csv | head -5

5. Repository Setup

5.1 Fork and Clone

BASH

Fork the repository on GitHub, then clone your fork
git clone https://github.com/<your-username>/hcls-ai-factory.git
cd hcls-ai-factory

Verify repository structure
1s -la

5.2 Repository Layout

hcls-ai-factory/

F—— docker-compose.yml # All 14 services + infrastructure
F—— .env.example # Template environment configuration
F—— nextflow.config # Nextflow pipeline configuration
F—— main.nf # Nextflow DSL2 pipeline definition
F—— start-services.sh # Service startup script

F—— requirements.txt # Python dependencies

|

F—— genomics/ # Stage 1: Genomics Pipeline

| — parabricks/ # Parabricks configs and scripts

| | | fq2bam.sh # BWA-MEM2 alignment wrapper

| | '— deepvariant.sh # DeepVariant variant calling wrapper
| — portals # Genomics Portal (Port 5000)

| | '~ app.py

| L— data/ # Input/output data directory

| }— reference/ # GRCh38 reference genome

| f— fastq/ # Input FASTQ files

| F— bam/ # Alignment output

| L— vcf/ # Variant call output

|

— rag/ # Stage 2: RAG Chat Pipeline

|

|

— api/ # RAG API (Port 5001)
| ' app.py

— chat/
| — app.py
f— embeddings/
| L— embed_variants.py
f— annotation/
| }— clinvar.py
| }— alphamissense.py
| L= vep.py
F— knowledge/
| L— genes.json
L— data/
— clinvar/

L— alphamissense/

discovery/
pipeline/
b— _init_ .py
f— initialize.py
— normalize.py

[

F__

f— structure_prep.py
— molecule_gen.py
— chemistry_qc.py
f— conformer_gen.py
— docking.py

— ranking.py

L— reporting.py

L— schemas.py

monitoring/

f— grafana/

| }— provisioning/
| L dashboards/
f— prometheus/

| — prometheus.yml
L— exporters/

landing/
L— index.html

scripts/

F— run_pipeline.py

f— download_references.sh
L— validate_deployment.sh

[e R

Q
o

cs/

r

structure_discovery.py

H H B H B

Streamlit Chat (Port 8501)
BGE embedding pipeline

Variant annotation pipeline

Gene knowledge base
201 genes, 13 therapeutic areas

ClinvVar database
AlphaMissense predictions

Stage 3: Drug Discovery Pipeline
10-stage discovery pipeline

Stage 1: Initialize

Stage 2: Normalize Target
Stage 3: Structure Discovery
Stage 4: Structure Preparation
Stage 5: Molecule Generation

Stage 6: Chemistry QC

H H B H B

H H OH H

Stage 7: Conformer Generation
Stage 8: Molecular Docking
Stage 9: Composite Ranking
Stage 10: Reporting

Discovery UI (Port 8505)

Discovery Portal (Port 8510)

Pydantic data models

Monitoring stack

Landing Page (Port 8080)

Utility scripts

Pipeline launcher
Reference data downloader
Deployment validator

Documentation

5.3 Environment Configuration

BASH

Copy the example environment file

cp .env.example .env

Edit with your credentials and paths
nano .env

The .env file should contain:

BASH
=== API Keys ===
ANTHROPIC_API_KEY=sk-ant-apif3-XXXXXXXXXXXX
NGC_API_KEY=XXXXXXXXXXXX

=== Model Configuration ===
CLAUDE_MODEL=claude-sonnet-4-20250514
CLAUDE_TEMPERATURE=0.3

=== Reference Data ===
REFERENCE_GENOME=/data/reference/GRCh38.fa

=== Milvus Configuration ===
MILVUS_HOST=localhost
MILVUS_PORT=19530

=== BioNeMo NIM URLs ===
MOLMIM_URL=http://localhost:8001
DIFFDOCK_URL=http://localhost:8002

=== Pipeline Configuration ===
PIPELINE_MODE=full
NUM_CANDIDATES=100

MIN_QED=0.67

MIN_DOCK_SCORE=-6.0

=== Monitoring ===
GRAFANA_USER=admin
GRAFANA_PASSWORD=changeme

5.4 Directory Structure for Data

BASH

Create data directories

mkdir -p genomics/data/{reference,fastq,bam,vcf}

mkdir -p rag/data/{clinvar,alphamissense}

mkdir -p discovery/data/{structures,molecules,reports}
mkdir -p monitoring/data/{grafana,prometheus}

6. Reference Data Preparation

6.1 GRCh38 Reference Genome

BASH

Download GRCh38 reference genome (~3.1 GB)
cd genomics/data/reference

wget
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines
.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz

Decompress
gunzip GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
mv GCA_000001405.15_GRCh38_no_alt_analysis_set.fna GRCh38.fa

Index the reference (required by Parabricks)
Note: Parabricks fg2bam can build its own index, but pre-building saves time
samtools faidx GRCh38.fa

Verify
1s -1lh GRCh38.fa*
Expected: GRCh38.fa (~3.1 GB), GRCh38.fa.fai

6.2 ClinVar Database

BASH

Download Clinvar VCF (~1.2 GB)
cd rag/data/clinvar

wget https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/clinvar.vcf.gz
wget https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/clinvar.vcf.gz.tbi

Verify record count (~4.1M clinical variants)
zcat clinvar.vcf.gz | grep -v '“#' | wc -1
Expected: ~4,100,000

echo "ClinVar download complete"

6.3 AlphaMissense Database

BASH

Download AlphaMissense predictions (~4 GB)
cd rag/data/alphamissense

wget https://storage.googleapis.com/dm_alphamissense/AlphaMissense_hg38.tsv.gz

Verify record count (~71.7M predictions)
zcat AlphaMissense_hg38.tsv.gz | tail -n +5 | wc -1
Expected: ~71,697,560

| echo "AlphaMissense download complete”

AlphaMissense pathogenicity thresholds:

Classification Score Range Description

Pathogenic >0.564 Likely damaging to protein function
Ambiguous 0.34-0.564 Uncertain significance

Benign <0.34 Likely tolerated

6.4 HG002 Sample Data

BASH

Download HGOO2 FASTQ files for demo/testing (~200 GB)
cd genomics/data/fastq

GIAB HGOO2 30x WGS, 2x250 bp paired-end

Note: These are large files — ensure ~200 GB free space

wget ftp://ftp-
trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HGOO2_NA24385_son/NIST_HiSeq_ HGO®2_Homogenei
ty-10953946/NHGRI_I1lumina3@0X_AJtrio_novoalign_bams/HGOO2.GRCh38.2x250.fastq.gz

For a smaller test subset, use a downsampled version if available
echo "HGOO2 download complete — verify file sizes match expected ~200 GB"
1s -1h *.fastq.gz

7. Docker Compose Configuration

7.1 Service Definition Overview

The docker-compose.yml defines all 14 application services plus 2 infrastructure services (etcd, MinlO) for
Milvus. Services are organized into three groups matching the pipeline stages, plus monitoring.

7.2 docker-compose.yml Structure

YAML

version: '3.8'

services:

—— Infrastructure
etcd:
image: quay.io/coreos/etcd:v3.5.5
environment:
- ETCD_AUTO_COMPACTION_MODE=revision
- ETCD_AUTO_COMPACTION_RETENTION=1000
ports:
- "2379:2379"
volumes:

- etcd_data:/etcd
restart: unless-stopped

minio:
image: minio/minio:latest
environment:
MINIO_ACCESS_KEY: minioadmin
MINIO_SECRET_KEY: minioadmin
ports:
- "9000:9000"
volumes:
- minio_data:/data
command: server /data
restart: unless-stopped

—— Milvus Vector Database
milvus:
image: milvusdb/milvus:v2.4-latest
ports:
- "19530:19530"
environment:
ETCD_ENDPOINTS: etcd:2379
MINIO_ADDRESS: minio:9000
depends_on:
- etcd
- minio
volumes:
- milvus_data:/var/lib/milvus
restart: unless-stopped

attu:

image: zilliz/attu:latest
ports:

- "8000:3000"
environment:

MILVUS_URL: milvus:19530
depends_on:

- milvus
restart: unless-stopped

—— Stage 1: Genomics
genomics-portal:
build: ./genomics/portal
ports:
- "5000:5000"
volumes:
- ./genomics/data:/data
environment:
- REFERENCE_GENOME=/data/reference/GRCh38.fa
restart: unless-stopped

—— Stage 2: RAG Chat
rag-api:
build: ./rag/api
ports:
- "5001:5001"
environment:
- ANTHROPIC_API_KEY=${ANTHROPIC_API_KEY}
- CLAUDE_MODEL=$%{CLAUDE_MODEL}
- CLAUDE_TEMPERATURE=${CLAUDE_TEMPERATURE}

- MILVUS_HOST=milvus
- MILVUS_PORT=19530
depends_on:
... (121 more lines)

7.3 Infrastructure Services

Milvus 2.4 requires two backend services:

Service Image Port Purpose
etcd quay.io/coreos/etcd:v3.5.5 2379 Metadata storage for Milvus
MinlO minio/minio:latest 9000 Object storage for Milvus
segments

Milvus milvusdb/milvus:v2.4-latest 19530 Vector database

7.4 Volume Mounts and Data Paths
Volume Container Path Host Purpose
./genomics/data /data Reference genome, FASTQ, BAM, VCF
./rag/data /data ClinVar, AlphaMissense databases
etcd_data /etcd Milvus metadata persistence
minio_data /data Milvus segment persistence
milvus_data /var/lib/milvus Milvus index persistence
prometheus_data /prometheus Prometheus TSDB
grafana_data /var/lib/grafana Grafana state and dashboards

7.5 GPU Resource Allocation

The GB10 GPU is shared across GPU-consuming services. Only one GPU-heavy workload should run at a time:

Service GPU Usage Peak Memory Typical Duration
Parabricks fg2bam 70-90% GPU ~40 GB 20-45 min
Parabricks DeepVariant 80-95% GPU ~60 GB 10-35 min
MolMIM NIM Moderate ~8 GB Always running
DiffDock NIM Moderate ~8 GB Always running

DCGM Exporter Minimal Minimal Always running

8. Deploy Genomics Pipeline (Stage 1)

8.1 Parabricks Container Setup

BASH

Pull Parabricks container for ARM64
docker pull nvcr.io/nvidia/clara/clara-parabricks:4.6.0-1

Verify the image
docker images | grep parabricks
Expected: clara-parabricks 4.6.0-1

8.2 BWA-MEM2 Alignment (fg2bam)

The fg2bam tool performs GPU-accelerated read alignment using BWA-MEM2 and produces a sorted, duplicate-
marked BAM file.
BASH

docker run --rm --gpus all \
-v $(pwd)/genomics/data:/data \
nvcr.io/nvidia/clara/clara-parabricks:4.6.0-1 \
pbrun fg2bam \
--ref /data/reference/GRCh38.fa \
--in-fq /data/fastq/HGO02_R1.fastq.gz /data/fastq/HGOO2_R2.fastq.gz \
--out-bam /data/bam/HGOO2.bam \
--num-gpus 1

Expected performance:

Metric Value

Runtime 20-45 minutes

GPU Utilization 70-90%

Peak GPU Memory ~40 GB

Output Sorted, duplicate-marked BAM (~100 GB)

8.3 DeepVariant Variant Calling

BASH

docker run --rm --gpus all \
-v $(pwd)/genomics/data:/data \
nvcr.io/nvidia/clara/clara-parabricks:4.6.0-1 \
pbrun deepvariant \
--ref /data/reference/GRCh38.fa \
--in-bam /data/bam/HG@O2.bam \
--out-variants /data/vcf/HGeO2.vcf.gz \
--num-gpus 1

Expected performance:

Metric Value

Runtime 10-35 minutes

GPU Utilization 80-95%

Peak GPU Memory ~60 GB

Output Compressed VCF (gzipped)

8.4 VCF Output Verification

BASH

Count total variants
zcat genomics/data/vcf/HGOO2.vcf.gz | grep -v "' | wc -1
Expected: ~11,700,000 (11.7M variants)

Count PASS variants with QUAL > 30

zcat genomics/data/vcf/HGOO2.vcf.gz | grep -v "' | \
awk '$7 == "PASS" && $6 > 30' | wc -1

Expected: ~3,500,000 (3.5M)

Count SNPs vs Indels

zcat genomics/data/vcf/HGOO2.vcf.gz | grep -v "' | \
awk '{if(length($4)==1 && length($5)==1) print "SNP"; else print "INDEL"}' | \
sort | uniq -c

Expected: ~4,200,000 SNPs, ~1,000,000 indels

VCF output summary:

Metric Expected Value

Total variants ~11.7M
PASS variants (QUAL > 30) ~3.5M
SNPs ~4.2M
Indels ~1.0M
Coding region variants ~35,000

8.5 Genomics Portal (Port 5000)

After genomics processing, start the portal:
BASH

docker compose up -d genomics-portal

Verify
curl -s http://localhost:5000/health
Expected: {"status": "healthy"}

Access the Genomics Portal at http://<dgx-spark-ip>:5000 to browse VCF results.

8.6 Performance Benchmarks

Step Wall Time GPU Util Peak Memory Output Size
fg2bam (alignment) 20-45 min 70-90% ~40 GB ~100 GB BAM
DeepVariant (calling) 10-35 min 80-95% ~60 GB ~1 GB VCF.gz
Total Stage 1 30-80 min — — —

9. Deploy RAG Chat Pipeline (Stage 2)

9.1 Milvus Vector Database Setup

BASH

Start Milvus and its dependencies
docker compose up -d etcd minio milvus attu

Wait for Milvus to be ready (30-60 seconds)
sleep 30

Verify Milvus is running
curl -s http://localhost:19530/v1/health/ready
Expected: {"status":"ok"}

Verify Attu UI
curl -s -o /dev/null -w "%{http_code}" http://localhost:8000
Expected: 200

9.2 Collection Schema

Create the genomic_evidence collection with 17 fields:
PYTHON

from pymilvus import connections, Collection, FieldSchema, CollectionSchema, DataType, utility

Connect to Milvus
connections.connect(host="1localhost", port=19530)

Define schema with 17 fields

fields = [
FieldSchema(name="id", dtype=DataType.INT64, is_primary=True, auto_id=True),
FieldSchema(name="embedding", dtype=DataType.FLOAT_VECTOR, dim=384),
FieldSchema(name="chrom", dtype=DataType.VARCHAR, max_length=10),
FieldSchema(name="pos", dtype=DataType.INT64),
FieldSchema(name="ref", dtype=DataType.VARCHAR, max_length=500),
FieldSchema(name="alt", dtype=DataType.VARCHAR, max_length=500),
FieldSchema(name="qual", dtype=DataType.FLOAT),
FieldSchema(name="gene", dtype=DataType.VARCHAR, max_length=100),
FieldSchema(name="consequence", dtype=DataType.VARCHAR, max_length=200),
FieldSchema(name="impact", dtype=DataType.VARCHAR, max_length=20),
FieldSchema(name="genotype", dtype=DataType.VARCHAR, max_length=10),
FieldSchema(name="text_summary", dtype=DataType.VARCHAR, max_length=5000),

FieldSchema(name="clinical_significance", dtype=DataType.VARCHAR, max_length=200),
FieldSchema(name="rsid", dtype=DataType.VARCHAR, max_length=20),
FieldSchema(name="disease_associations", dtype=DataType.VARCHAR, max_length=2000),
FieldSchema(name="am_pathogenicity", dtype=DataType.FLOAT),
FieldSchema(name="am_class", dtype=DataType.VARCHAR, max_length=20),

schema = CollectionSchema(fields, description="Genomic evidence for RAG")
collection = Collection("genomic_evidence", schema)

index_params = {
"index_type": "IVF_FLAT'

}

collection.load()

Collection schema reference:

Create IVF_FLAT index on embedding field

"metric_type": "COSINE",

"
Bl

"params": {"nlist": 1024}

collection.create_index("embedding", index_params)

Load collection into memory

print(f"Collection created: {collection.name}")
print(f"Schema fields: {len(fields)}")

Primary key, auto-generated

384 dimensions (BGE-small-

Chromosome (chr1-22, chrX,

Genomic position
Reference allele
Alternate allele

Variant quality score

VEP functional consequence

HIGH, MODERATE, LOW,

Sample genotype (e.g., 0/1,

Natural-language variant

ClinVar classification

dbSNP identifier

diseases/conditions

AlphaMissense score (0.0-

Field Type Details
1 id INT64
2 embedding FLOAT_VECTOR
en-v1.5)
3 chrom VARCHAR(10)
chry)
4 pos INT64
5 ref VARCHAR(500)
6 alt VARCHAR(500)
7 qual FLOAT
8 gene VARCHAR(100) Gene symbol
9 consequence VARCHAR(200)
10 impact VARCHAR(20)
MODIFIER
11 enotype VARCHAR(10
genotyp (10) 1/1)
12 text_summary VARCHAR(5000)
summary
13 clinical_significance VARCHAR(200)
14 rsid VARCHAR(20)
. L Associated
15 disease_associations VARCHAR(2000)
16 am_pathogenicity FLOAT
1.0)
17 am_class VARCHAR(20)

pathogenic, ambiguous, or

benign

9.3 Variant Annotation Pipeline

The annotation pipeline enriches VCF variants with data from three sources:
BASH

Run the annotation pipeline

python3 rag/annotation/clinvar.py \
--vcf genomics/data/vcf/HGOO2.vcf.gz \
--clinvar rag/data/clinvar/clinvar.vcf.gz \
--output rag/data/annotated_clinvar.tsv

python3 rag/annotation/alphamissense.py \
--vcf genomics/data/vcf/HGOO2.vcf.gz \
--am rag/data/alphamissense/AlphaMissense_hg38.tsv.gz \
--output rag/data/annotated_am.tsv

python3 rag/annotation/vep.py \
--vcf genomics/data/vcf/HGOO2.vcf.gz \
--output rag/data/annotated_vep.tsv

Expected annotation matches:

Source Total Records Patient Matches
Clinvar 4,100,000 ~35,616

. ~6,831 (ClinVar-matched with
AlphaMissense 71,697,560

predictions)

VEP Per-variant All coding variants

9.4 BGE Embedding and Indexing

PYTHON

from sentence_transformers import SentenceTransformer
from pymilvus import connections, Collection

Load embedding model
model = SentenceTransformer('BAAI/bge-small-en-v1.5"') # 384 dimensions

Connect to Milvus
connections.connect(host="1localhost", port=19530)
collection = Collection("genomic_evidence")

Example: embed and insert a variant

text = "chr9:35065263 G>A in VCP gene. ClinVar: Pathogenic. AlphaMissense: 0.87 (pathogenic). Consequence:
missense_variant. Impact: MODERATE."

embedding = model.encode(text).tolist() # 384-dim vector

Insert into Milvus

data = [{
"embedding": embedding,
"chrom": "chr9",

pos": 35065263,

"ref": "G",

"alt": "A",

"qual": 99.9,

"gene": "VCP",

"consequence": "missense_variant",

"impact": "MODERATE",
"genotype": "0/1",
"text_summary": text,

"clinical_significance": "Pathogenic",

"rsid": "rs188935092",

"disease_associations": "Inclusion body myopathy with Paget disease and frontotemporal dementia",
"am_pathogenicity": 0.87,

"am_class": "pathogenic"

3

collection.insert(data)
collection.flush()

Milvus index configuration:

Embedding Model BGE-small-en-v1.5
Dimensions 384

Index Type IVF_FLAT

Metric Type COSINE

nlist 1024

nprobe (search) 16

9.5 Anthropic Claude Integration

PYTHON

import anthropic
client = anthropic.Anthropic(api_key=0s.environ["ANTHROPIC_API_KEY"])

def query_claude(question: str, context: str) -> str:
"""Send RAG query to Claude with retrieved genomic context."""
response = client.messages.create(
model="claude-sonnet-4-20250514",
max_tokens=4096,
temperature=0.3,
messages=[{

"role": "user",

"content": f"""You are a genomics expert. Answer the question using the provided genomic
evidence.
Context:
{context}

Question: {question}

3]
)

return response.content[0].text

Claude configuration:

Parameter Value

Model claude-sonnet-4-20250514
Temperature 0.3
Max Tokens 4096

9.6 Knowledge Base

The platform includes a curated knowledge base of 201 genes across 13 therapeutic areas, with 171 genes (85%)
classified as druggable.

Metric Value

Total genes 201
Therapeutic areas 13
Druggable genes 171 (85%)

9.7 RAG API and Streamlit Chat

BASH

Start RAG API and Chat services
docker compose up -d rag-api streamlit-chat

Verify RAG API
curl -s http://localhost:5001/health
Expected: {"status": "healthy"}

Verify Streamlit Chat
curl -s -o /dev/null -w "%{http_code}" http://localhost:8501
Expected: 200

Access the Streamlit Chat at http://<dgx-spark-ip>:8501 for conversational variant analysis.

10. Deploy Drug Discovery Pipeline (Stage 3)

10.1 BioNeMo NIM Services

BASH

Pull BioNeMo containers (requires NGC authentication)
docker pull nvcr.io/nvidia/clara/bionemo-molmim:1.0
docker pull nvcr.io/nvidia/clara/diffdock:1.0

Start NIM services
docker compose up -d molmim diffdock

Wait for models to load (may take 2-5 minutes)
sleep 120

Verify MolMIM
curl -s http://localhost:8001/vl/health/ready
Expected: {"status": "ready"}

Verify DiffDock
curl -s http://localhost:8002/v1i/health/ready
Expected: {"status": "ready"}

10.2 10-Stage Pipeline Detail

Stage Name Input

1 Initialize Config + target gene
2 Normalize Target Gene symbol

3 Structure Discovery UniProt ID

4 Structure Preparation PDB IDs

5 Molecule Generation Seed SMILES + protein
6 Chemistry QC SMILES list

7 Conformer Generation Filtered SMILES

8 Molecular Docking Conformers + protein
9 Composite Ranking All scores

10 Reporting Ranked candidates

10.3 Structure Retrieval and Scoring

PYTHON

import requests

def search_pdb_structures(uniprot_id: str) -> list:

"""Search RCSB PDB for protein structures by UniProt ID."""
url = "https://search.rcsb.org/rcsbsearch/v2/query"
query = {
"query": {

"type": "terminal",

"service": "text",

"parameters": {

"attribute":

Output

PipelineConfig

Normalized target

PDB structure list

Prepared structures

Generated SMILES

Filtered SMILES

3D conformers (SDF)

Docking scores

Ranked candidates

PDF report

Key Operations
Validate parameters,

create run ID

Map to UniProt,
canonical name

Query RCSB PDB, score
by resolution
Download PDB, extract
binding sites

MolMIM NIM (Port
8001)

Lipinski, QED, TPSA
checks

RDKit conformer
embedding

DiffDock NIM (Port
8002)

Weighted composite

formula

Visualizations,
recommendations

"rcsb_polymer_entity_container_identifiers.reference_sequence_identifiers.database_accession",

"operator": "exact_match",
"value": uniprot_id

3

"return_type": "entry"
¥
response = requests.post(url, json=query)
return response.json().get("result_set"”, [])

10.4 Molecule Generation (MolMIM)

PYTHON

import requests

def generate_molecules(seed_smiles: str, num_candidates: int = 100) -> list:
"""Generate molecule candidates using MolMIM NIM."""
response = requests.post(
"http://localhost:8001/generate”,
json={
"smiles": seed_smiles,
"num_molecules": num_candidates,
"algorithm": "CMA-ES",
"property_name": "QED",
"min_similarity": 0.3,
"particles": 30,
"iterations": 10

)

return response.json()["generated_molecules"]

10.5 Molecular Docking (DiffDock)

PYTHON

def dock_molecule(protein_pdb: str, ligand_sdf: str) -> dict:
"""Score binding affinity using DiffDock NIM."""
response = requests.post(
"http://localhost:8002/molecular-docking/diffdock/generate”,
json={
"protein": protein_pdb,
"ligand": ligand_sdf,
"num_poses": 10

)

return response.json()

10.6 Drug-Likeness Scoring

Drug-likeness is assessed using three criteria:

Lipinski Rule of Five:

Property Threshold Description
Molecular Weight <=500 Da Size constraint
LogP <=5 Lipophilicity

H-Bond Donors (HBD) <=5 Polar surface groups

H-Bond Acceptors (HBA) <=10 Polar surface groups

Additional thresholds:

Metric Threshold Interpretation

QED >0.67 Drug-like

TPSA < 140 Angstrom squared Good oral bioavailability
PYTHON

from rdkit import Chem
from rdkit.Chem import Descriptors, QED

def assess_drug_likeness(smiles: str) -> dict:
"""Evaluate drug-likeness using Lipinski, QED, and TPSA.
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return {"valid": False}

mw = Descriptors.MolWt(mol)

logp = Descriptors.MolLogP(mol)

hbd = Descriptors.NumHDonors(mol)
hba = Descriptors.NumHAcceptors(mol)
tpsa = Descriptors.TPSA(mol)
ged_score = QED.ged(mol)

lipinski_pass = (mw <= 500 and logp <= 5 and hbd <= 5 and hba <= 10)

return {
"valid": True,
"mw": mw,
“logp”: logp,
"hbd": hbd,
"hba": hba,

"tpsa": tpsa,

"ged": ged_score,
"lipinski_pass": lipinski_pass,
"drug_like": ged_score > 0.67,
"oral_bioavail": tpsa < 140

10.7 Composite Ranking Formula

Candidates are ranked using a weighted composite score:

| composite = 0.30 * generation_score + 0.40 * docking_score_normalized + ©.30 * ged_score

Docking score normalization:
PYTHON

def normalize_docking_score(dock_score: float) -> float:
"""Normalize docking score to [©, 1] range.
More negative = better binding = higher normalized score.
return max(0.0, min(1.0, (10.0 + dock_score) / 20.0))

Raw Docking Score Normalized Score Interpretation

-10.0 kcal/mol 0.00 Excellent binding
-8.0 kcal/mol 0.10 Strong binding
-6.0 kcal/mol 0.20 Moderate binding
0.0 kcal/mol 0.50 Weak binding
+10.0 kcal/mol 1.00 No binding

Note: The normalization maps more negative (better) docking scores to lower normalized values. In the composite
formula, the docking component rewards lower (better) scores.

Composite score weights:

Component Weight Source

Generation Score 30% MolMIM similarity/property score
Docking Score (normalized) 40% DiffDock binding affinity

QED Score 30% RDKit quantitative drug-likeness

10.8 Discovery Ul and Portal

BASH

Start Discovery services
docker compose up -d discovery-ui discovery-portal

Verify Discovery UI
curl -s -o /dev/null -w "%{http_code}" http://localhost:8505
Expected: 200

Verify Discovery Portal
curl -s -o /dev/null -w "%{http_code}" http://localhost:8510
Expected: 200

* Discovery Ul (Port 8505): Interactive pipeline execution interface

e Discovery Portal (Port 8510): Results browser and reporting portal

10.9 PDF Report Generation

The final pipeline stage generates a PDF report containing:
e Target gene and variant summary
e PDB structure details with binding site analysis
e Top-ranked candidates with SMILES, scores, and 2D depictions
¢ Docking poses and binding affinity plots
e Lipinski and QED compliance table

e Composite score ranking

11. Nextflow Orchestration

11.1 DSL2 Pipeline Architecture

The HCLS Al Factory uses Nextflow DSL2 for pipeline orchestration. Each pipeline stage is defined as a separate
process, with channels connecting inputs and outputs.

11.2 Pipeline Modes

Mode Description Stages Executed

full Complete end-to-end pipeline 1+ 2+ 3 (all stages)
target Start from target gene (skip genomics) 2+3

drug Drug discovery only (pre-existing target) 3 only

demo VCP demo with pre-loaded data 1+ 2+ 3 (demo subset)
genomics_only Genomics pipeline only 1lonly

11.3 Execution Profiles

Profile Description Use Case

standard Local execution, default settings Development

docker Docker container execution Standard deployment
singularity Singularity container execution HPC environments
dgx_spark Optimized for DGX Spark hardware Production on DGX Spark
slurm SLURM workload manager Multi-node clusters
test Minimal test data, fast execution CI/CD testing

11.4 Pipeline Launcher

BASH

Run with the pipeline launcher script
python3 scripts/run_pipeline.py \
--mode full \
--profile dgx_spark \
--fastq genomics/data/fastq/ \
--reference genomics/data/reference/GRCh38.fa

Or run directly with Nextflow
nextflow run main.nf \
-profile dgx_spark \
--mode full \
--fastq_dir genomics/data/fastq/ \
--reference genomics/data/reference/GRCh38.fa \
--outdir results/

11.5 Pipeline Configuration

GROOVY

// nextflow.config
params {
// Pipeline mode
mode = 'full'

// Input paths

fastq_dir = 'genomics/data/fastq’

reference = 'genomics/data/reference/GRCh38.fa’
outdir = 'results’

// Service endpoints

milvus_host = 'localhost'

milvus_port = 19530

molmim_url = 'http://localhost:8001"'
diffdock_url = "http://localhost:8002"

// Drug discovery parameters
num_candidates = 100
min_ged = 0.67

min_dock_score = -6.0
¥
profiles {
dgx_spark {
docker.enabled = true
docker.runOptions = '--gpus all'
process {
executor = 'local’
memory = '120 GB'
cpus = 128
3
X
test {
params.mode = 'demo’
process {
memory = '16 GB'
cpus = 4
3
X
¥

12. Service Startup and Health

12.1 start-services.sh Startup Order

Services should be started in dependency order:

BASH

#!/bin/bash
start-services.sh — Start all HCLS AI Factory services

set -e

echo "Starting
docker compose
sleep 10

echo "Starting
docker compose
sleep 30

echo "Starting
docker compose
sleep 120

echo "Starting
docker compose

echo "Starting
docker compose

sleep 10

12.2 Landing Page (Port 8080)

infrastructure services...'

up -d etcd minio

Milvus..."
up -d milvus attu

BioNeMo NIM services..."
up -d molmim diffdock

application services..."

up -d genomics-portal rag-api streamlit-chat discovery-ui discovery-portal landing-page

monitoring..."

up -d prometheus grafana node-exporter dcgm-exporter

bash scripts/validate_deployment.sh

echo "All services started. Running health checks..."

The landing page at http://<dgx-spark-ip>:8080 provides a directory of all services with links and status

indicators.

12.3 Health Check Endpoints

Service
Genomics Portal
RAG API

Milvus

Attu

Streamlit Chat
MolMIM NIM
DiffDock NIM
Discovery Ul
Discovery Portal
Grafana
Prometheus
Node Exporter

DCGM Exporter

Port
5000
5001
19530
8000
8501
8001
8002
8505
8510
3000
9099
9100
9400

Health Endpoint
/health

/health
/v1l/health/ready
/api/health
/healthz
/v1l/health/ready
/v1l/health/ready
/health

/health
/api/health
/-/healthy
/metrics

/metrics

Expected Response

{"status":
{"status":
{"status":

HTTP 200
HTTP 200

{"status":
{"status":
{"status":
{"status":
{"status":

HTTP 200
Metrics text

Metrics text

"healthy"}
"healthy"}
"ok"}

"ready"}
"ready"}
"healthy"}
"healthy"}
"ok"}

12.4 Verifying All Services

BASH

#!/bin/bash
validate_deployment.sh — Verify all services are running

declare -A SERVICES=(
["Landing Page"]="http://localhost:8080"
["Genomics Portal"]="http://localhost:5000/health"
["RAG API"]="http://localhost:5001/health"
["Milvus"]="http://localhost:19530/v1l/health/ready"
["Attu"]="http://localhost:8000"
["Streamlit Chat"]="http://localhost:8501/healthz"
["MolMIM"]="http://localhost:8001/v1/health/ready"
["DiffDock"]="http://localhost:8002/vl/health/ready"
["Discovery UI"]="http://localhost:8505/health"
["Discovery Portal"]="http://localhost:8510/health"
["Grafana"]="http://localhost:3000/api/health"
["Prometheus"]="http://localhost:9099/-/healthy"
["Node Exporter"]="http://localhost:9100/metrics"
["DCGM Exporter"]="http://localhost:9400/metrics"

echo "=== HCLS AI Factory Health Check ==="
for service in "${!SERVICES[@]}"; do
url="${SERVICES[$service]}"
status=$(curl -s -o /dev/null -w "%{http_code}" "$url" 2>/dev/null || echo "ERR")

if ["$status” == "200"]; then
echo "[OK] $service ($url)"
else
echo "[FAIL] $service ($url) — HTTP $status"
fi
done

13. Monitoring and Observability

13.1 Grafana Setup (Port 3000)

BASH

Start Grafana
docker compose up -d grafana

Access at http://<dgx-spark-ip>:3000
Default credentials: admin / changeme

Default Grafana credentials:

Parameter Value

Username admin

Password changeme

13.2 Prometheus Configuration (Port 9099)

YAML

monitoring/prometheus/prometheus.yml
global:
scrape_interval: 15s

scrape_configs:
- job_name: 'node-exporter'
static_configs:
- targets: ['node-exporter:9100']

- job_name: 'dcgm-exporter'
static_configs:
- targets: ['dcgm-exporter:9400']

- job_name: 'rag-api’
static_configs:
- targets: ['rag-api:5001']
metrics_path: /metrics

- job_name: 'prometheus’
static_configs:
- targets: ['localhost:9090']

13.3 DCGM Exporter (Port 9400)

Key GPU metrics exposed by the DCGM Exporter:

Metric Description

DCGM_FI_DEV_GPU_UTIL
DCGM_FI_DEV_FB_USED
DCGM_FI_DEV_FB_FREE
DCGM_FI_DEV_GPU_TEMP
DCGM_FI_DEV_POWER_USAGE
DCGM_FI_DEV_SM_CLOCK
DCGM_FI_DEV_MEM_CLOCK

13.4 Node Exporter (Port 9100)

The Node Exporter provides host system metrics — CPU, memory, disk, and network utilization — critical for

monitoring the DGX Spark ARM64 system.

13.5 Key Dashboard Panels

Recommended Grafana dashboard panels:

GPU utilization percentage

GPU framebuffer memory used (MB)
GPU framebuffer memory free (MB)
GPU temperature (Celsius)

Power consumption (Watts)
Streaming multiprocessor clock (MHz)

Memory clock (MHz)

Panel Data Source Purpose

Track fq2bam and DeepVariant GPU

GPU Utilization DCGM

usage
GPU Memory DCGM Monitor peak memory during genomics
CPU Utilization Node Exporter ARMG64 core usage across 144 cores
Memory Usage Node Exporter Unified 128 GB LPDDR5x utilization
Disk 1/0 Node Exporter gr\g\cﬂeijnr;%hpm for FASTQ/BAM
Network 1/0 Node Exporter API call throughput
Container Status Docker Service health overview

13.6 Alert Configuration

YAML

Example alert rules for Prometheus
groups:
- name: hcls-alerts
rules:
- alert: GPUMemoryHigh
expr: DCGM_FI_DEV_FB_USED / (DCGM_FI_DEV_FB_USED + DCGM_FI_DEV_FB_FREE) > ©0.95
for: 5m
labels:
severity: warning
annotations:
summary: "GPU memory usage above 95%"

- alert: ServiceDown
expr: up == 0
for: 2m
labels:
severity: critical
annotations:
summary: “"Service {{ $labels.job }} is down"

14. Security Configuration

14.1 APl Key Management

BASH

Store API keys in .env file (not committed to git)
echo " >> .gitignore

.env

Set restrictive permissions
chmod 600 .env

Verify .env is in .gitignore
grep -q '.env' .gitignore && echo "OK: .env is gitignored"

Never commit API keys to version control. Use environment variables exclusively:

Variable Sensitivity Storage
ANTHROPIC_API_KEY High .env file, chmod 600
NGC_API KEY High .env file, chmod 600
GRAFANA_PASSWORD Medium .env file

14.2 Docker Network Isolation

Docker Compose creates an isolated bridge network. Only explicitly exposed ports are accessible from the host:
BASH

Verify network isolation
docker network 1s | grep hcls
docker network inspect hcls-ai-factory_default

14.3 Container Security

Best practices applied to the deployment:

e Run application containers as non-root users where possible
e Use read-only filesystem mounts for reference data

e Limit container capabilities with --cap-drop ALL

¢ Pin container image versions (no latest tags in production)

14.4 Data Access Controls

BASH

Set appropriate permissions on data directories
chmod -R 750 genomics/data/

chmod -R 750 rag/data/

chmod -R 750 discovery/data/

Ensure only the deployment user can access sensitive data
chown -R $(whoami):$(whoami) genomics/data/ rag/data/ discovery/data/

15. Data Management

15.1 Storage Layout

Directory Contents Size Persistence
genomics/data/reference/ GRCh38 genome 3.1GB Permanent
genomics/data/fastq/ Input FASTQ files ~200 GB Keep until processed

genomics/data/bam/ Alignment output ~100 GB Delete after VCF

genomics/data/vcf/ Variant calls ~1GB Permanent

rag/data/clinvar/ ClinVar database ~1.2GB Permanent
rag/data/alphamissense/ AlphaMissense DB ~4 GB Permanent
milvus_data (Docker volume) Vectorindex ~2 GB Permanent
discovery/data/ Structures, molecules Variable Per-run

15.2 Intermediate File Cleanup

BAM files are the largest intermediate output (~100 GB). Once the VCF has been verified, BAM files can be
deleted to reclaim storage:

BASH

Verify VCF is complete before deleting BAM
zcat genomics/data/vcf/HGOO2.vcf.gz | grep -v "' | wc -1
Confirm ~11.7M variants

Delete intermediate BAM
rm -f genomics/data/bam/HGOO2.bam genomics/data/bam/HGOO2.bam.bai
echo "Reclaimed ~100 GB"

15.3 Milvus Data Persistence

Milvus data is stored in Docker volumes. To back up:

BASH

Stop Milvus for consistent backup
docker compose stop milvus

Back up volumes
docker run --rm \
-v hcls-ai-factory_milvus_data:/data \
-v $(pwd)/backups:/backup \
alpine tar czf /backup/milvus_data_$(date +%Y%m%d).tar.gz /data

Restart
docker compose start milvus

15.4 Backup Procedures

BASH

Full backup script

#!/bin/bash
BACKUP_DIR=./backups/$(date +%Y%m%d)
mkdir -p $BACKUP_DIR

Back up VCF results
cp -r genomics/data/vcf/ $BACKUP_DIR/vcf/

Back up environment config (without secrets)
grep -v 'API_KEY' .env > $BACKUP_DIR/env_sanitized.txt

Back up Milvus volumes
docker compose stop milvus
for vol in milvus_data etcd_data minio_data; do
docker run --rm \
-v hcls-ai-factory_${vol}:/data \
-v $(pwd)/$BACKUP_DIR:/backup \
alpine tar czf /backup/${vol}.tar.gz /data
done
docker compose start milvus

echo "Backup complete: $BACKUP_DIR"

16. Performance Tuning

16.1 GPU Memory Management

The DGX Spark uses 128 GB unified LPDDR5x memory shared between CPU and GPU. Key considerations:

¢ Parabricks DeepVariant peaks at ~60 GB GPU memory — ensure other GPU services are idle during
genomics processing
* MolMIM and DiffDock each require ~8 GB — they can co-exist during drug discovery
e Monitor with nvidia-smi and DCGM metrics during pipeline runs
BASH

Monitor GPU memory in real-time
watch -n 1 nvidia-smi

Check unified memory allocation
nvidia-smi --query-gpu=memory.used,memory.free,memory.total --format=csv

16.2 Milvus Index Tuning

Parameter Default Tuning Guidance
. Increase for larger collections (trade
nlist 1024 o .
build time for search quality)
Increase for higher recall (trade latency
nprobe 16
for accuracy)
. Use COSINE for normalized BGE
metric_type COSINE .
embeddings
PYTHON

Search with tuned parameters

search_params = {
"metric_type": "COSINE",
"params": {"nprobe": 16}

results = collection.search(
data=[query_embedding],
anns_field="embedding",
param=search_params,
limit=10,
output_fields=["gene", "clinical_significance", "text_summary"]

16.3 Docker Resource Limits

YAML

Example resource limits in docker-compose.yml
services:
rag-api:
deploy:
resources:
limits:
memory: 16G
cpus: '16'
reservations:
memory: 4G
cpus: '4'

16.4 NVMe 1/0 Optimization

For FASTQ and BAM processing, 1/0 throughput is critical:

BASH

Check NVMe performance
fio --name=seqread --rw=read --bs=1M --size=1G --numjobs=4 --runtime=10 --group_reporting

Ensure data directories are on NVMe
df -h genomics/data/

16.5 Pipeline Concurrency Settings

The Nextflow pipeline supports controlled concurrency:
GROOVY

// nextflow.config — concurrency settings

process {
maxForks = 4 // Maximum parallel processes
maxRetries = 2 // Retry failed processes
errorStrategy = 'retry'’

executor {
queueSize = 8 // Maximum queued tasks
pollInterval = '5 sec'

17. Troubleshooting Guide

17.1 Service Not Starting

BASH

Check service logs
docker compose logs <service-name> --tail 50

Check if port is already in use
ss -tlnp | grep <port>

Restart a specific service
docker compose restart <service-name>

17.2 GPU Out of Memory

BASH

Check current GPU memory usage
nvidia-smi

Kill any orphaned GPU processes
sudo fuser -v /dev/nvidia*

Reduce Parabricks memory by limiting GPU threads
Add --gpu-mem-limit flag if available

Ensure NIM services are stopped during genomics
docker compose stop molmim diffdock

17.3 Milvus Connection Issues

BASH

Verify Milvus dependencies are running
docker compose ps etcd minio milvus

Check Milvus logs for errors
docker compose logs milvus --tail 100

Test connectivity
curl -s http://localhost:19530/v1/health/ready

Reset Milvus if corrupted

docker compose down milvus etcd minio

docker volume rm hcls-ai-factory_milvus_data hcls-ai-factory_etcd_data hcls-ai-factory_minio_data
docker compose up -d etcd minio milvus

17.4 BioNeMo NIM Not Ready

BASH

NIM services may take 2-5 minutes to load models
Check logs for model loading progress

docker compose logs molmim --tail 50

docker compose logs diffdock --tail 5@

Verify GPU is available for NIM

nvidia-smi | grep -i "molmim\|diffdock"

Restart if stuck

docker compose restart molmim diffdock

17.5 Parabricks Failures

Error

CUDA out of memory
Reference index not found
Input file not found
Unsupported GPU

17.6 Claude API Errors

Error

401 Unauthorized
429 Rate Limited
500 Server Error

Connection refused

17.7 Docker Issues

BASH
Docker daemon not running

sudo systemctl start docker
sudo systemctl enable docker

Disk space full
docker system prune -a --volumes
df -h /var/lib/docker

Permission denied
sudo usermod -aG docker $USER
newgrp docker

Cause

Insufficient GPU memory

Missing .fai file
Wrong FASTQ path

Driver mismatch

Cause

Invalid API key

Too many requests
Anthropic service issue

No internet

Resolution

Stop other GPU services first

Run samtools faidx GRCh38.fa
Check volume mount paths

Update NVIDIA driver

Resolution

Verify ANTHROPIC_API_KEYin .env
Implement exponential backoff

Retry after 30 seconds

Check network connectivity

17.8 Common Error Messages Table

Error Message Service Resolution
Connection refused on port
Milvus Start etcd + MinlO first, then Milvus

19530

NVIDIA driver not found Docker Install NVIDIA Container Toolkit

Model not loaded MolMIM/DiffDock Wait 2-5 minutes for model loading

Collection not found Milvus Run schema creation script (Section 9.2)

API key not set RAG API Set ANTHROPIC_API KEYin .env
Clean BAM intermediates, expand

Out of disk space Parabricks g
storage

Permission denied: /data Any Check volume mount permissions

18. VCP/FTD Demo Walkthrough

18.1 Demo Overview

The VCP (Valosin-Containing Protein) / FTD (Frontotemporal Dementia) demo showcases the full three-stage
pipeline using a known pathogenic variant:

Variant rs188935092

Location chr9:35065263 G>A

Gene VCP

ClinVar Classification Pathogenic

AlphaMissense Score 0.87 (pathogenic, threshold >0.564)

Disease Inclusion body myopathy with Paget disease and FTD
Seed Molecule CB-5083 (VCP/p97 inhibitor)

PDB Structures 800, 9DIL, 7K56, 5FTK

Binding Domain D2 ATPase domain, ~450 cubic angstroms
Druggability Score 0.92

18.2 Pre-Demo Setup

BASH

Ensure all services are running
bash scripts/validate_deployment.sh

Verify Milvus has the VCP variant loaded
python3 -c "

from pymilvus import connections, Collection
connections.connect(host="localhost', port=19530)
col = Collection('genomic_evidence")

col.load()
results = col.query('gene == \"VCP\"', output_fields=['rsid', 'clinical_significance', 'am_pathogenicity'])
print(f'VCP variants found: {len(results)}')
for r in results[:3]:
print(r)

18.3 Running the Demo

BASH

Run the demo pipeline mode
python3 scripts/run_pipeline.py --mode demo

Or via Nextflow
nextflow run main.nf -profile dgx_spark --mode demo

Step-by-step execution:

1. Stage 1 (Genomics): Process demo FASTQ subset through Parabricks fq2bam and DeepVariant

2. Stage 2 (RAG): Annotate VCP variant with ClinVar (Pathogenic) and AlphaMissense (0.87), embed into
Milvus, query Claude for clinical interpretation

3. Stage 3 (Drug Discovery): Retrieve PDB structures (800I, 9DIL, 7K56, 5FTK), generate molecules from CB-
5083 seed via MolMIM, dock with DiffDock, rank by composite score

18.4 Expected Results

Metric Expected Value

Candidates generated 100

Pass Lipinski Rule of Five 87

QED > 0.67 (drug-like) 72

Top docking scores -8.2 to -11.4 kcal/mol
Composite score range 0.68 -0.89

Top candidate characteristics:

Molecular Weight 300 - 500 Da

LogP 1.5-45

QED 0.67-0.92

TPSA 40 - 130 squared angstroms
Docking Score -8.2 to -11.4 kcal/mol

Composite Score 0.68 - 0.89

19. Scaling Beyond DGX Spark

19.1 Phase 1 to Phase 3 Roadmap

Phase Hardware Scale Use Case
. . Development, demos, single-
Phase 1 DGX Spark Single workstation . .
patient analysis
Phase 2 DGX B200 Single server, multi-GPU Production cohort analysis
Phase 3 DGX SuperPOD Multi-node cluster Population-scale genomics

19.2 Kubernetes Migration Path

For Phase 2 and beyond, migrate from Docker Compose to Kubernetes:

¢ Replace docker-compose.yml with Helm charts

¢ Use NVIDIA GPU Operator for GPU scheduling

¢ Deploy Milvus Cluster mode (distributed) instead of standalone
e Use persistent volume claims (PVCs) for data storage

¢ Implement horizontal pod autoscaling for RAG API

19.3 Multi-GPU Considerations

e Parabricks supports --num-gpus for multi-GPU parallelism
¢ MolMIM and DiffDock can be replicated across GPUs
e Milvus supports distributed deployment with multiple query nodes

19.4 NVIDIA FLARE for Federated Learning

For multi-institutional deployments, NVIDIA FLARE enables federated learning across DGX Spark nodes without
sharing raw patient data.

20. Appendix A: Complete Configuration Reference

20.1 All Environment Variables

Variable Default Description

ANTHROPIC API KEY (required) Anthropic API key for Claude
NGC_API_KEY (required) NVIDIA NGC API key
REFERENCE_GENOME /data/reference/GRCh38.fa Path to reference genome
MILVUS HOST localhost Milvus server hostname
MILVUS_PORT 19530 Milvus server port

MOLMIM_URL http://localhost:8001 MolMIM NIM endpoint

DIFFDOCK_URL
CLAUDE_MODEL
CLAUDE_TEMPERATURE
PIPELINE_MODE
NUM_CANDIDATES
MIN_QED
MIN_DOCK_SCORE
GRAFANA_USER
GRAFANA_PASSWORD

http://localhost:8002
claude-sonnet-4-20250514
0.3

full

100

0.67

-6.0

admin

changeme

20.2 AlphaMissense Thresholds

Classification

Pathogenic
Ambiguous

Benign

20.3 Scoring Weights

Component
Generation Score
Docking Score (normalized)

QED Score

Score Range

>0.564

0.34-0.564

<0.34

Weight
0.30 (30%)

0.40 (40%)
0.30 (30%)

20.4 Drug-Likeness Thresholds

Property
Molecular Weight
LogP

H-Bond Donors
H-Bond Acceptors
QED

TPSA

Threshold
<=500 Da

>0.67

< 140 squared angstroms

20.5 Docking Score Interpretation

Score (kcal/mol)
<-10.0

-8.0to0 -10.0
-6.0to0-8.0

Binding Affinity
Excellent
Strong

Moderate

DiffDock NIM endpoint

Claude model identifier

Claude sampling temperature
Pipeline execution mode

Number of molecules to generate
Minimum QED threshold
Minimum docking score (kcal/mol)
Grafana admin username

Grafana admin password

Rule

Lipinski
Lipinski
Lipinski
Lipinski
Drug-likeness

Oral bioavailability

Assessment
Strong candidate
Viable candidate

Marginal candidate

>-6.0 Weak

Normalization formula:

normalized = max(®, min(1, (10 + dock_score) / 20))

21. Appendix B: APl Reference

21.1 MolMIM API (Port 8001)

Generate Molecules:
JSON

// POST http://localhost:8001/generate
// Request:
{
"smiles": "CC1=CC=C(C=C1l)C(=0)NC2=CC=CC=C2",
"num_molecules": 100,
"algorithm": "CMA-ES",
"property_name": "QED",
"min_similarity": 0.3,
"particles": 30,
"iterations": 10

¥
// Response:
{
"generated_molecules": [
{
"smiles": "CC1=CC=C(C=C1)C(=0)NC2=CC=C(F)C=C2",
"score": 0.85,
"similarity": 0.78
¥
1
¥

Health Check:

GET http://localhost:8001/v1/health/ready
Response: {"status": "ready"}

21.2 DiffDock API (Port 8002)

Molecular Docking:
JISON

// POST http://localhost:8002/molecular-docking/diffdock/generate
// Request:

{

"protein": "<PDB file content>",

Poor candidate

"ligand": "<SDF file content>",
"num_poses": 10
¥
// Response:
{
"poses": [
{
"pose_id": @,
"confidence": 0.95,
"score": -9.7,
"ligand_sdf": "<docked SDF content>"
X
]
¥

Health Check:

GET http://localhost:8002/v1/health/ready
Response: {"status": "ready"}

21.3 RAG API Endpoints (Port 5001)

Method Endpoint

GET /health

POST /query

POST /search

GET /collections
GET /stats

RAG Query Example:

JSON

// POST http://localhost:5001/query

// Request:

{
"question": "What pathogenic variants are found in
"top_k": 1@,
"filters": {

"gene": "VCP",
"impact": "HIGH"
}
¥

// Response:

{

"sources": [
{
"gene": "VCP",
"rsid": "rs188935092",

"am_pathogenicity": 0.87,
"similarity_score": 0.94

"clinical_significance": "Pathogenic",

the VCP gene?",

"answer": "The VCP gene contains the variant rs188935092...",

Description

Service health check

RAG query with context retrieval
Vector similarity search

List Milvus collections

Collection statistics

1,

"model"”: "claude-sonnet-4-20250514",
"tokens_used": 1847

}

21.4 Health Check Endpoints Summary

Service
Genomics Portal
RAG API

Milvus

Attu

Streamlit Chat
MolMIM
DiffDock
Discovery Ul
Discovery Portal
Grafana
Prometheus
Node Exporter

DCGM Exporter

22. Appendix C: Schema Definitions

Endpoint
/health
/health

/vl/health/ready

/api/health
/healthz

/v1l/health/ready
/v1l/health/ready

/health
/health
/api/health
/-/healthy
/metrics

/metrics

22.1 Milvus Collection Schema

Collection: ‘genomic_evidence’

Field Data Type Constraints Description

Skom\IONU'I-bUJNl—‘:&t

=
N

id
embedding
chrom

pos

ref

alt

qual

gene
consequence
impact
genotype

text_summary

INT64
FLOAT_VECTOR
VARCHAR
INT64
VARCHAR
VARCHAR
FLOAT
VARCHAR
VARCHAR
VARCHAR
VARCHAR
VARCHAR

Method

GET
GET
GET
GET
GET
GET
GET
GET
GET
GET
GET
GET
GET

Primary Key, Auto ID
dim=384
max_length=10
max_length=500
max_length=500
max_length=100
max_length=200
max_length=20
max_length=10
max_length=5000

Unique record identifier
BGE-small-en-v1.5 embedding
Chromosome (chr1-22, chrX, chrY)
Genomic position (1-based)
Reference allele

Alternate allele

Variant quality score

HGNC gene symbol

VEP consequence term
HIGH/MODERATE/LOW/MODIFIER
Sample genotype (0/1, 1/1)

Natural-language summary

13 clinical_significance VARCHAR max_length=200 ClinVar classification

14 rsid VARCHAR max_length=20 dbSNP RS identifier

15 disease_associations VARCHAR max_length=2000 Associated diseases

16 am_pathogenicity FLOAT 0.0-1.0 AlphaMissense pathogenicity
17 am_class VARCHAR max_length=20 pathogenic/ambiguous/benign

Index configuration:

Parameter Value

Index Type IVF_FLAT
Metric Type COSINE
nlist 1024
nprobe (search) 16

22.2 Pydantic Data Models

PYTHON

from pydantic import BaseModel, Field
from typing import List, Optional
from enum import Enum

class TargetHypothesis(BaseModel):
"""Genomic target identified from variant analysis.
gene: str
variant_id: str
rsid: Optional[str]
clinical_significance: str
am_pathogenicity: Optional[float]
am_class: Optional[str]
therapeutic_area: str
druggability_score: float
rationale: str

class StructureInfo(BaseModel):

PDB structure information for a target protein.

pdb_id: str
resolution: float
method: str

chain: str
binding_site_volume: Optional[float]

class StructureManifest(BaseModel):
"""Collection of structures for a target.
target_gene: str
uniprot_id: str
structures: List[StructureInfo]
selected_structure: str

class MoleculeProperties(BaseModel):
"""Chemical properties of a generated molecule.
molecular_weight: float
logp: float
hbd: int
hba: int

tpsa: float
ged: float
lipinski_pass: bool

class GeneratedMolecule(BaseModel):
"""Molecule generated by MolMIM."""
smiles: str
generation_score: float
similarity_to_seed: float
properties: MoleculeProperties

class DockingResult(BaseModel):
"""Molecular docking result from DiffDock."""
smiles: str
dock_score: float # kcal/mol (negative = better)
confidence: float
pose_sdf: str

class RankedCandidate(BaseModel):
"""Final ranked drug candidate with composite score.
rank: int

smiles: str

generation_score: float

dock_score: float

dock_score_normalized: float

ged: float

composite_score: float # ©.3*gen + 0.4*dock + 0.3*qged
lipinski_pass: bool

properties: MoleculeProperties

class PipelineConfig(BaseModel):
"""Configuration for a pipeline run.
mode: str = "full"
target_gene: Optional[str]
seed_smiles: Optional[str]
num_candidates: int = 100
min_ged: float = 0.67
min_dock_score: float = -6.0
(16 more lines)

23. Appendix D: Docker Image Reference

23.1 All Container Images

Service Image Tag Architecture
nvcr.io/nvidia/clara/clara-

Parabricks / / / 4.6.0-1 ARMG64 (aarch64)
parabricks

Milvus milvusdb/milvus v2.4-latest ARM64
nvcr.io/nvidia/clara/bionemo-

MolMIM . 1.0 ARM64
molmim

DiffDock nvcr.io/nvidia/clara/diffdock 1.0 ARM64

Grafana
Prometheus

Node Exporter
DCGM Exporter

etcd
MinlO
Attu

grafana/grafana 10.2.2

prom/prometheus v2.48.0
prom/node-exporter latest
nvcr.io/nvidia/k8s/dcgm-

latest
exporter
quay.io/coreos/etcd v3.5.5
minio/minio latest
zilliz/attu latest

23.2 ARM64 Compatibility Notes

The DGX Spark uses an ARM64 (aarch64) processor. All container images must be ARM64-compatible:

ARM64
ARM64
ARM64

ARM64

ARM64
ARM64
ARM64

¢ NVIDIA NGC images for Parabricks, BioNeMo, and DCGM include ARM64 variants
e Community images (Grafana, Prometheus, MinlO, etcd) provide multi-arch manifests

e Custom application images must be built with --platform linux/armé4

¢ If building locally, ensure the base image supports ARM64

BASH

Expected: armé64

Verify image architecture
docker inspect --format='{{.Architecture}}' <image-name>

Build for ARM64 explicitly
docker build --platform linux/arm64 -t my-service:latest ./my-service/

24. Appendix E: Validation Checklists

24.1 Pre-Deployment Checklist

Item

1 DGX Spark
hardware

2 GPU detected

3 Docker installed

i Docker Compose

V2

5 NVIDIA runtime

6 Python version

7 Disk space

. Reference
genome

9 ClinVar data

Command / Check

uname -m

nvidia-smi
docker --version
docker compose version

‘docker info \

python3 --version

df -h /

1s genomics/data/reference/GRCh38.fa

1s rag/data/clinvar/clinvar.vcf.gz

Expected
aarch64

GB10 GPU
listed

24.0+

v2.X

grep nvidia®

3.10+

>=320 GB
free

File exists,
~3.1GB

File exists,

nvidia listed

10

11

12

13

14

AlphaMissense
data

API keys
configured

NGC key
configured

. env permissions

.env in .gitignore

1s
rag/data/alphamissense/AlphaMissense_hg38.tsv.gz

grep ANTHROPIC_API_KEY .env

grep NGC_API_KEY .env

stat -c %a .env

grep .env .gitignore

24.2 Post-Deployment Checklist

#

u A W N

10
11
12
13
14

15

Item

All containers

running

Landing Page

Command / Check
docker compose ps

curl http://localhost:8080

Genomics Portal curl http://localhost:5000/health

RAG API

Milvus ready

Attu Ul

Streamlit Chat

curl http://localhost:5001/health
curl http://localhost:19530/v1/health/ready

curl -o /dev/null -w "%{http code}"
http://localhost:8000

curl -o /dev/null -w "%{http _code}"
http://localhost:8501

MolMIM ready curl http://localhost:8001/v1/health/ready
DiffDock ready curl http://localhost:8002/v1/health/ready
Discovery Ul curl http://localhost:8505/health

Discovery Portal curl http://localhost:8510/health

Grafana curl http://localhost:3000/api/health
Prometheus curl http://localhost:9099/-/healthy

DCGM metrics

Milvus collection

curl http://localhost:9400/metrics

Python:
Collection("genomic_evidence").num_entities

24.3 Demo Readiness Checklist

o U B W N

Item Check

Run

All ices health
services healthy validate_deployment.sh

VCP variant in Milvus Query gene="VCP"
ClinVar annotation VCP classification
AlphaMissense score VCP am_pathogenicity
PDB structures accessible Query RCSB for VCP

MolMIM generates Test generation from CB-

~1.2GB

File exists, ~4
GB

Key set (not
empty)

Key set (not
empty)

600

Present

Expected
14+ services "Up"

HTTP 200
{"status":"healthy"}
{"status":"healthy"}

{"status":"ok"}

200

200

{"status":"ready"}
{"status":"ready"}
{"status":"healthy"}
{"status":"healthy"}
{"status":"ok"}

HTTP 200

Metrics text

Expected
All [OK]

rs188935092 found
Pathogenic

0.87

800, 9DIL, 7K56, 5FTK

Molecules returned

5083
Test docking against VCP

7 DiffDock docks structure Scores returned

8 Claude responds Test RAG query about VCP Coherent response

9 Grafana dashboards Login at port 3000 Dashboards visible

10 GPU metrics flowing Check DCGM in Grafana GPU util, memory shown

25. Appendix F: Glossary

25.1 Genomics Terms

Text-based format for storing nucleotide sequences and

FASTQ quality scores

o Binary Alignment Map — compressed format for aligned
sequencing reads

VCF Variant Call Format — standard format for genomic variants

SNP Single Nucleotide Polymorphism — single base-pair variant

Indel Insertion or deletion of nucleotides in the genome

WGS Whole Genome Sequencing — sequencing of entire genome

GRChas Genome Reference Consortium Human Build 38 — current
reference genome

GIAB Genome in a Bottle — NIST benchmark samples (e.g., HG002)

Clinvar NCBI database of clinically relevant genomic variants

VEP Variant Effect Predictor — functional annotation tool

AlphaMissense DeepMind model predicting missense variant pathogenicity

Paired-end Sequencing both ends of a DNA fragment for improved

alignment

Average number of reads covering each position in the
Coverage (30x)
genome

25.2 ML/Al Terms

Retrieval-Augmented Generation — combining search with

RAG .
LLM generation
Embedding Dense vector representation of text or data
BGE BAAI General Embedding — sentence transformer model
family
Inverted File Index — approximate nearest neighbor search
IVF_FLAT

method

COSINE

NIM

LLM

Vector Database
nlist

nprobe

25.3 Drug Discovery Terms

Cosine similarity — metric for comparing vector directions
NVIDIA Inference Microservice — containerized model serving
Large Language Model — e.g., Claude

Database optimized for similarity search on dense vectors
Number of clusters in IVF index (build-time parameter)

Number of clusters to search at query time (recall vs. latency)

SMILES
PDB

Molecular Docking

QED
Lipinski Rule of Five
TPSA

LogP
HBD / HBA

Conformer

Binding Affinity

kcal/mol

MolMIM
DiffDock

Druggability

CB-5083
RDKit

Simplified Molecular Input Line Entry System — text notation
for molecules

Protein Data Bank — repository of 3D protein structures
Computational prediction of ligand-protein binding pose and
affinity

Quantitative Estimate of Drug-likeness — composite drug-
likeness score (0-1)

Empirical rules predicting oral bioavailability

Topological Polar Surface Area — predictor of membrane
permeability

Partition coefficient — measure of lipophilicity
Hydrogen Bond Donors / Acceptors
3D spatial arrangement of a molecule's atoms

Strength of interaction between a drug molecule and its target
protein

Kilocalories per mole — unit for binding energy (more negative
= stronger)

Molecule generation model from NVIDIA BioNeMo
Diffusion-based molecular docking model

Assessment of whether a protein target can be modulated by
a small molecule

VCP/p97 inhibitor used as seed molecule in the VCP demo

Open-source cheminformatics toolkit for molecular analysis

This deployment guide is maintained as part of the HCLS Al Factory open-source project. For updates, issues, and

contributions, visit the project repository on GitHub.

HCLS Al Factory — Apache 2.0 | Author: Adam Jones | February 2026

