
Open-Source Project

Deployment Guide
HCLS AI Factory
Deployment and Configuration Guide
for NVIDIA DGX Spark
Open-Source Precision Medicine Platform
on NVIDIA DGX Spark

02/2026 | Version 1.0 | Apache 2.0 License
Author: Adam Jones

Table of Contents
1. Introduction
2. Architecture Overview
3. Prerequisites
4. Environment Preparation
5. Repository Setup
6. Reference Data Preparation
7. Docker Compose Configuration
8. Deploy Genomics Pipeline (Stage 1)
9. Deploy RAG Chat Pipeline (Stage 2)
10. Deploy Drug Discovery Pipeline (Stage 3)
11. Nextflow Orchestration
12. Service Startup and Health
13. Monitoring and Observability
14. Security Configuration
15. Data Management
16. Performance Tuning
17. Troubleshooting Guide
18. VCP/FTD Demo Walkthrough
19. Scaling Beyond DGX Spark
20. Appendix A: Complete Configuration Reference
21. Appendix B: API Reference
22. Appendix C: Schema Definitions
23. Appendix D: Docker Image Reference
24. Appendix E: Validation Checklists
25. Appendix F: Glossary

1. Introduction
1.1 Purpose
This document provides step-by-step instructions for deploying the HCLS AI Factory on an NVIDIA DGX Spark workstation. It covers all three pipeline stages — genomics, RAG-powered variant intelligence, and AI-driven drug discovery — using exclusively open-source and publicly available components.
1.2 Scope
The guide addresses hardware validation, software installation, container deployment, data preparation, pipeline execution, monitoring, security, and troubleshooting. It targets the open-source fork of the HCLS AI Factory that runs entirely on Docker Compose without requiring VAST Data, Kubernetes, or multi-node infrastructure.
1.3 Audience
• Bioinformatics Engineers deploying genomics pipelines on DGX Spark
• ML/AI Engineers integrating RAG and BioNeMo NIM microservices
• DevOps Engineers managing containerized service stacks
• Researchers forking the project for their own precision medicine workflows
1.4 Document Conventions
	Convention
	Meaning

	monospace
	Commands, file paths, code

	Bold
	UI elements, key terms

	Italic
	Variable values to be replaced

	$VARIABLE
	Environment variable

	<placeholder>
	User-supplied value

1.5 Genomics and Drug Discovery Primer
This section provides essential background for engineers who may not have a biology or chemistry background.
1.5.1 DNA Sequencing
DNA sequencing reads the order of nucleotide bases (A, T, C, G) in an organism's genome. Modern short-read sequencers (e.g., Illumina) produce paired-end reads — two sequences from opposite ends of a DNA fragment. The standard demo sample HG002 is a 30x whole-genome sequencing (WGS) dataset with 2x250 bp paired-end reads, producing approximately 200 GB of FASTQ data.

1.5.2 Genomics Pipeline Stages
	Stage
	Input
	Tool
	Output
	Description

	Quality Control
	FASTQ
	FastQC
	QC Report
	Assess read quality and adapter contamination

	Alignment
	FASTQ + Reference
	BWA-MEM2 (fq2bam)
	BAM
	Map reads to GRCh38 reference genome

	Variant Calling
	BAM
	DeepVariant
	VCF
	Identify SNPs and indels vs. reference

	Annotation
	VCF
	VEP + ClinVar + AlphaMissense
	Annotated VCF
	Add functional, clinical, and pathogenicity data

	Embedding
	Annotated VCF
	BGE-small-en-v1.5
	Vectors (384-dim)
	Convert variant evidence to dense embeddings

1.5.3 Variant Annotation
Variants are annotated from multiple sources:
• VEP (Variant Effect Predictor): Assigns functional consequences and impact levels — HIGH, MODERATE, LOW, or MODIFIER.
• ClinVar: NCBI database of 4.1 million clinical variant interpretations (Pathogenic, Likely Pathogenic, Benign, etc.).
• AlphaMissense: DeepMind model with 71,697,560 missense variant pathogenicity predictions. Thresholds: pathogenic (>0.564), ambiguous (0.34-0.564), benign (<0.34).
1.5.4 Vector Embeddings and RAG
Annotated variants are converted to 384-dimensional dense vectors using the BGE-small-en-v1.5 embedding model and stored in Milvus. Retrieval-Augmented Generation (RAG) queries Milvus for relevant genomic evidence, then passes the results as context to Anthropic Claude for natural-language clinical interpretation.
1.5.5 Drug Discovery Pipeline
The 10-stage drug discovery pipeline transforms a genomic target into ranked drug candidates:
	Stage
	Name
	Description

	1
	Initialize
	Load configuration, validate target gene and variant

	2
	Normalize Target
	Map gene symbol to UniProt ID and canonical name

	3
	Structure Discovery
	Query RCSB PDB for 3D protein structures, score by resolution and method

	4
	Structure Preparation
	Download PDB files, extract binding site coordinates

	5
	Molecule Generation
	Generate SMILES candidates via MolMIM NIM (Port 8001) using seed molecule

	6
	Chemistry QC
	Filter by Lipinski Rule of Five (MW<=500, LogP<=5, HBD<=5, HBA<=10)

	7
	Conformer Generation
	Generate 3D conformers with RDKit for docking input

	8
	Molecular Docking
	Score binding affinity via DiffDock NIM (Port 8002)

	9
	Composite Ranking
	Rank candidates: 30% generation + 40% docking + 30% QED

	10
	Reporting
	Generate PDF report with structures, scores, and recommendations

1.5.6 End-to-End Data Flow Summary
	FASTQ (200 GB) ─► Parabricks fq2bam ─► BAM (100 GB) ─► DeepVariant ─► VCF (11.7M variants)
 ─► Annotation (ClinVar + AlphaMissense + VEP) ─► Milvus (384-dim vectors)
 ─► Claude RAG (variant interpretation) ─► Target Hypothesis
 ─► PDB Structure Retrieval ─► MolMIM (molecule generation)
 ─► DiffDock (molecular docking) ─► Composite Ranking ─► PDF Report

2. Architecture Overview
2.1 System Components
The HCLS AI Factory comprises three application pipeline stages running on a single DGX Spark:
	Stage
	Name
	Function

	Stage 1
	Genomics Pipeline
	FASTQ alignment and variant calling with GPU-accelerated Parabricks

	Stage 2
	RAG Chat Pipeline
	Variant annotation, vector embedding, and Claude-powered conversational AI

	Stage 3
	Drug Discovery Pipeline
	Structure-aware molecule generation, docking, and composite ranking

2.2 Technology Stack
	Layer
	Technology
	Version / Details

	Hardware
	NVIDIA DGX Spark
	GB10 GPU, 128 GB unified LPDDR5x, 144 ARM64 cores

	OS
	DGX OS
	Ubuntu-based, ARM64 (aarch64)

	Container Runtime
	Docker + NVIDIA Container Toolkit
	nvidia-docker runtime

	Orchestration
	Docker Compose
	Multi-service deployment

	Pipeline Orchestration
	Nextflow
	DSL2, multiple profiles

	GPU Genomics
	NVIDIA Parabricks
	4.6.0-1

	Vector Database
	Milvus
	2.4 (with etcd + MinIO)

	Embedding Model
	BGE-small-en-v1.5
	384 dimensions

	LLM
	Anthropic Claude
	claude-sonnet-4-20250514

	Molecule Generation
	BioNeMo MolMIM NIM
	1.0

	Molecular Docking
	BioNeMo DiffDock NIM
	1.0

	Cheminformatics
	RDKit
	Python library

	Monitoring
	Grafana + Prometheus
	10.2.2 / v2.48.0

	GPU Monitoring
	DCGM Exporter
	Port 9400

	Language
	Python
	3.10+

2.3 Service Architecture
The platform deploys 14 services across 14 ports:
	#
	Service
	Port
	Protocol
	Description

	1
	Landing Page
	8080
	HTTP
	Platform entry point and service directory

	2
	Genomics Portal
	5000
	HTTP
	Genomics pipeline UI and results viewer

	3
	RAG API
	5001
	HTTP
	REST API for variant queries and RAG

	4
	Milvus
	19530
	gRPC
	Vector database for genomic evidence

	5
	Attu
	8000
	HTTP
	Milvus administration UI

	6
	Streamlit Chat
	8501
	HTTP
	Conversational AI interface for variant analysis

	7
	MolMIM NIM
	8001
	HTTP
	BioNeMo molecule generation microservice

	8
	DiffDock NIM
	8002
	HTTP
	BioNeMo molecular docking microservice

	9
	Discovery UI
	8505
	HTTP
	Drug discovery pipeline interface

	10
	Discovery Portal
	8510
	HTTP
	Drug discovery results and reporting portal

	11
	Grafana
	3000
	HTTP
	Monitoring dashboards

	12
	Prometheus
	9099
	HTTP
	Metrics collection and storage

	13
	Node Exporter
	9100
	HTTP
	Host system metrics

	14
	DCGM Exporter
	9400
	HTTP
	NVIDIA GPU metrics

Infrastructure services (not externally exposed):
	Service
	Port
	Purpose

	etcd
	2379
	Milvus metadata store

	MinIO
	9000
	Milvus object storage

2.4 Data Flow
	┌───┐
│ HCLS AI Factory — Data Flow │
├───┤
│ │
│ FASTQ ──► Parabricks fq2bam ──► BAM ──► Parabricks DeepVariant ──► VCF │
│ (200 GB) (20-45 min) (100 GB) (10-35 min) (11.7M) │
│ │
│ VCF ──► ClinVar (4.1M) ──► AlphaMissense (71.7M) ──► VEP ──► Annotated │
│ (35,616 match) (6,831 matched) │
│ │
│ Annotated ──► BGE-small-en-v1.5 ──► Milvus (384-dim, IVF_FLAT) ──► │
│ (COSINE, nlist=1024) │
│ │
│ Milvus ──► Claude (sonnet-4) ──► Target Hypothesis │
│ (temp=0.3, 4096 tokens) │
│ │
│ Target ──► PDB Structures ──► MolMIM (8001) ──► Chemistry QC ──► │
│ (Lipinski + QED) │
│ │
│ Conformers ──► DiffDock (8002) ──► Composite Ranking ──► PDF Report │
│ (0.3*gen + 0.4*dock + 0.3*QED) │
│ │
└───┘

3. Prerequisites
3.1 Hardware Requirements
	Component
	Specification

	System
	NVIDIA DGX Spark

	GPU
	GB10 Grace Blackwell Superchip

	Memory
	128 GB unified LPDDR5x

	CPU
	144 ARM64 cores

	Architecture
	aarch64 (ARM64)

	Price
	$3,999

Storage requirements:
	Dataset / Component
	Size

	GRCh38 Reference Genome
	3.1 GB

	FASTQ Input (HG002 30x WGS)
	~200 GB

	BAM Output (intermediate)
	~100 GB

	ClinVar Database
	~1.2 GB

	AlphaMissense Predictions
	~4 GB

	Milvus Index Data
	~2 GB

	BioNeMo Model Cache
	~10 GB

	Total Minimum
	~320 GB

	Recommended
	1 TB NVMe

3.2 Software Requirements
	Software
	Minimum Version
	Notes

	DGX OS
	Latest
	Ubuntu-based ARM64

	Docker Engine
	24.0+
	With Compose V2

	NVIDIA Container Toolkit
	Latest
	nvidia-docker runtime

	CUDA Toolkit
	12.x
	Included with DGX OS

	Python
	3.10+
	For pipeline scripts

	Nextflow
	23.04+
	DSL2 support required

	Git
	2.30+
	For repository clone

	NGC CLI
	Latest
	For BioNeMo container pulls

3.3 Network Requirements
• Internet access for initial setup (container pulls, data downloads)
• Outbound HTTPS to api.anthropic.com for Claude API calls
• Outbound HTTPS to nvcr.io for NGC container registry
• Outbound HTTPS to NCBI, RCSB PDB for reference data downloads
• All service ports (listed in Section 2.3) accessible on localhost
3.4 Access Credentials
	Credential
	Purpose
	How to Obtain

	ANTHROPIC_API_KEY
	Claude API access
	https://console.anthropic.com

	NGC_API_KEY
	NVIDIA NGC container registry
	https://ngc.nvidia.com

4. Environment Preparation
4.1 DGX Spark Initial Setup
Verify the system is a DGX Spark with the expected hardware:
 BASH
	# Verify ARM64 architecture
uname -m
Expected: aarch64

Verify CPU cores
nproc
Expected: 144

Verify total memory (128 GB)
free -h | grep Mem
Expected: ~128 GB total

Verify GPU is detected
nvidia-smi
Expected: GB10 GPU listed with driver version

4.2 NVIDIA Driver and CUDA Verification
 BASH
	# Check NVIDIA driver version
nvidia-smi --query-gpu=driver_version --format=csv,noheader
Expected: 550.x or later

Check CUDA version
nvcc --version
Expected: CUDA 12.x

Verify GPU compute capability
nvidia-smi --query-gpu=compute_cap --format=csv,noheader

Run a quick GPU test
nvidia-smi -q | head -30

4.3 Docker Installation and Configuration
 BASH
	# Verify Docker is installed
docker --version
Expected: Docker version 24.0+

Verify Docker Compose V2
docker compose version
Expected: Docker Compose version v2.x

Verify NVIDIA runtime is available
docker info | grep -i runtime
Expected: nvidia runtime listed

Test GPU access from a container
docker run --rm --gpus all nvidia/cuda:12.4.0-base-ubuntu22.04 nvidia-smi

Configure Docker daemon for NVIDIA runtime as default:
 BASH
	sudo tee /etc/docker/daemon.json <<'EOF'
{
 "default-runtime": "nvidia",
 "runtimes": {
 "nvidia": {
 "path": "nvidia-container-runtime",
 "runtimeArgs": []
 }
 },
 "default-address-pools": [
 {"base": "172.20.0.0/16", "size": 24}
],
 "log-driver": "json-file",
 "log-opts": {
 "max-size": "50m",
 "max-file": "3"
 }
}
EOF

sudo systemctl restart docker

4.4 Python Environment Setup
 BASH
	# Verify Python version
python3 --version
Expected: Python 3.10+

Create virtual environment
python3 -m venv ~/hcls-env
source ~/hcls-env/bin/activate

Install core dependencies
pip install --upgrade pip
pip install \
 anthropic \
 pymilvus \
 sentence-transformers \
 rdkit-pypi \
 pydantic \
 streamlit \
 fastapi \
 uvicorn \
 requests \
 pandas \
 numpy \
 reportlab \
 biopython \
 nextflow

4.5 NGC CLI Installation
 BASH
	# Download NGC CLI for ARM64
wget -O ngc-cli.zip https://api.ngc.nvidia.com/v2/resources/nvidia/ngc-apps/ngc_cli/versions/latest/files/ngccli_arm64.zip

Extract and install
unzip ngc-cli.zip -d ~/ngc-cli
chmod +x ~/ngc-cli/ngc-cli/ngc
export PATH=$PATH:~/ngc-cli/ngc-cli

Configure NGC CLI
ngc config set
Enter your NGC API key when prompted

Verify authentication
ngc registry image list --format_type csv | head -5

5. Repository Setup
5.1 Fork and Clone
 BASH
	# Fork the repository on GitHub, then clone your fork
git clone https://github.com/<your-username>/hcls-ai-factory.git
cd hcls-ai-factory

Verify repository structure
ls -la

5.2 Repository Layout
	hcls-ai-factory/
├── docker-compose.yml # All 14 services + infrastructure
├── .env.example # Template environment configuration
├── nextflow.config # Nextflow pipeline configuration
├── main.nf # Nextflow DSL2 pipeline definition
├── start-services.sh # Service startup script
├── requirements.txt # Python dependencies
│
├── genomics/ # Stage 1: Genomics Pipeline
│ ├── parabricks/ # Parabricks configs and scripts
│ │ ├── fq2bam.sh # BWA-MEM2 alignment wrapper
│ │ └── deepvariant.sh # DeepVariant variant calling wrapper
│ ├── portal/ # Genomics Portal (Port 5000)
│ │ └── app.py
│ └── data/ # Input/output data directory
│ ├── reference/ # GRCh38 reference genome
│ ├── fastq/ # Input FASTQ files
│ ├── bam/ # Alignment output
│ └── vcf/ # Variant call output
│
├── rag/ # Stage 2: RAG Chat Pipeline
│ ├── api/ # RAG API (Port 5001)
│ │ └── app.py
│ ├── chat/ # Streamlit Chat (Port 8501)
│ │ └── app.py
│ ├── embeddings/ # BGE embedding pipeline
│ │ └── embed_variants.py
│ ├── annotation/ # Variant annotation pipeline
│ │ ├── clinvar.py
│ │ ├── alphamissense.py
│ │ └── vep.py
│ ├── knowledge/ # Gene knowledge base
│ │ └── genes.json # 201 genes, 13 therapeutic areas
│ └── data/
│ ├── clinvar/ # ClinVar database
│ └── alphamissense/ # AlphaMissense predictions
│
├── discovery/ # Stage 3: Drug Discovery Pipeline
│ ├── pipeline/ # 10-stage discovery pipeline
│ │ ├── __init__.py
│ │ ├── initialize.py # Stage 1: Initialize
│ │ ├── normalize.py # Stage 2: Normalize Target
│ │ ├── structure_discovery.py # Stage 3: Structure Discovery
│ │ ├── structure_prep.py # Stage 4: Structure Preparation
│ │ ├── molecule_gen.py # Stage 5: Molecule Generation
│ │ ├── chemistry_qc.py # Stage 6: Chemistry QC
│ │ ├── conformer_gen.py # Stage 7: Conformer Generation
│ │ ├── docking.py # Stage 8: Molecular Docking
│ │ ├── ranking.py # Stage 9: Composite Ranking
│ │ └── reporting.py # Stage 10: Reporting
│ ├── ui/ # Discovery UI (Port 8505)
│ │ └── app.py
│ ├── portal/ # Discovery Portal (Port 8510)
│ │ └── app.py
│ └── models/ # Pydantic data models
│ └── schemas.py
│
├── monitoring/ # Monitoring stack
│ ├── grafana/
│ │ ├── provisioning/
│ │ └── dashboards/
│ ├── prometheus/
│ │ └── prometheus.yml
│ └── exporters/
│
├── landing/ # Landing Page (Port 8080)
│ └── index.html
│
├── scripts/ # Utility scripts
│ ├── run_pipeline.py # Pipeline launcher
│ ├── download_references.sh # Reference data downloader
│ └── validate_deployment.sh # Deployment validator
│
└── docs/ # Documentation
 └── ...

5.3 Environment Configuration
 BASH
	# Copy the example environment file
cp .env.example .env

Edit with your credentials and paths
nano .env

The .env file should contain:
 BASH
	# === API Keys ===
ANTHROPIC_API_KEY=sk-ant-api03-XXXXXXXXXXXX
NGC_API_KEY=XXXXXXXXXXXX

=== Model Configuration ===
CLAUDE_MODEL=claude-sonnet-4-20250514
CLAUDE_TEMPERATURE=0.3

=== Reference Data ===
REFERENCE_GENOME=/data/reference/GRCh38.fa

=== Milvus Configuration ===
MILVUS_HOST=localhost
MILVUS_PORT=19530

=== BioNeMo NIM URLs ===
MOLMIM_URL=http://localhost:8001
DIFFDOCK_URL=http://localhost:8002

=== Pipeline Configuration ===
PIPELINE_MODE=full
NUM_CANDIDATES=100
MIN_QED=0.67
MIN_DOCK_SCORE=-6.0

=== Monitoring ===
GRAFANA_USER=admin
GRAFANA_PASSWORD=changeme

5.4 Directory Structure for Data
 BASH
	# Create data directories
mkdir -p genomics/data/{reference,fastq,bam,vcf}
mkdir -p rag/data/{clinvar,alphamissense}
mkdir -p discovery/data/{structures,molecules,reports}
mkdir -p monitoring/data/{grafana,prometheus}

6. Reference Data Preparation
6.1 GRCh38 Reference Genome
 BASH
	# Download GRCh38 reference genome (~3.1 GB)
cd genomics/data/reference

wget https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz

Decompress
gunzip GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
mv GCA_000001405.15_GRCh38_no_alt_analysis_set.fna GRCh38.fa

Index the reference (required by Parabricks)
Note: Parabricks fq2bam can build its own index, but pre-building saves time
samtools faidx GRCh38.fa

Verify
ls -lh GRCh38.fa*
Expected: GRCh38.fa (~3.1 GB), GRCh38.fa.fai

6.2 ClinVar Database
 BASH
	# Download ClinVar VCF (~1.2 GB)
cd rag/data/clinvar

wget https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/clinvar.vcf.gz
wget https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/clinvar.vcf.gz.tbi

Verify record count (~4.1M clinical variants)
zcat clinvar.vcf.gz | grep -v '^#' | wc -l
Expected: ~4,100,000

echo "ClinVar download complete"

6.3 AlphaMissense Database
 BASH
	# Download AlphaMissense predictions (~4 GB)
cd rag/data/alphamissense

wget https://storage.googleapis.com/dm_alphamissense/AlphaMissense_hg38.tsv.gz

Verify record count (~71.7M predictions)
zcat AlphaMissense_hg38.tsv.gz | tail -n +5 | wc -l
Expected: ~71,697,560

echo "AlphaMissense download complete"

AlphaMissense pathogenicity thresholds:
	Classification
	Score Range
	Description

	Pathogenic
	> 0.564
	Likely damaging to protein function

	Ambiguous
	0.34 - 0.564
	Uncertain significance

	Benign
	< 0.34
	Likely tolerated

6.4 HG002 Sample Data
 BASH
	# Download HG002 FASTQ files for demo/testing (~200 GB)
cd genomics/data/fastq

GIAB HG002 30x WGS, 2x250 bp paired-end
Note: These are large files — ensure ~200 GB free space
wget ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG002_NA24385_son/NIST_HiSeq_HG002_Homogeneity-10953946/NHGRI_Illumina300X_AJtrio_novoalign_bams/HG002.GRCh38.2x250.fastq.gz

For a smaller test subset, use a downsampled version if available
echo "HG002 download complete — verify file sizes match expected ~200 GB"
ls -lh *.fastq.gz

7. Docker Compose Configuration
7.1 Service Definition Overview
The docker-compose.yml defines all 14 application services plus 2 infrastructure services (etcd, MinIO) for Milvus. Services are organized into three groups matching the pipeline stages, plus monitoring.
7.2 docker-compose.yml Structure
 YAML
	version: '3.8'

services:
 # ─── Infrastructure ───────────────────────────────────────
 etcd:
 image: quay.io/coreos/etcd:v3.5.5
 environment:
 - ETCD_AUTO_COMPACTION_MODE=revision
 - ETCD_AUTO_COMPACTION_RETENTION=1000
 ports:
 - "2379:2379"
 volumes:
 - etcd_data:/etcd
 restart: unless-stopped

 minio:
 image: minio/minio:latest
 environment:
 MINIO_ACCESS_KEY: minioadmin
 MINIO_SECRET_KEY: minioadmin
 ports:
 - "9000:9000"
 volumes:
 - minio_data:/data
 command: server /data
 restart: unless-stopped

 # ─── Milvus Vector Database ──────────────────────────────
 milvus:
 image: milvusdb/milvus:v2.4-latest
 ports:
 - "19530:19530"
 environment:
 ETCD_ENDPOINTS: etcd:2379
 MINIO_ADDRESS: minio:9000
 depends_on:
 - etcd
 - minio
 volumes:
 - milvus_data:/var/lib/milvus
 restart: unless-stopped

 attu:
 image: zilliz/attu:latest
 ports:
 - "8000:3000"
 environment:
 MILVUS_URL: milvus:19530
 depends_on:
 - milvus
 restart: unless-stopped

 # ─── Stage 1: Genomics ──────────────────────────────────
 genomics-portal:
 build: ./genomics/portal
 ports:
 - "5000:5000"
 volumes:
 - ./genomics/data:/data
 environment:
 - REFERENCE_GENOME=/data/reference/GRCh38.fa
 restart: unless-stopped

 # ─── Stage 2: RAG Chat ──────────────────────────────────
 rag-api:
 build: ./rag/api
 ports:
 - "5001:5001"
 environment:
 - ANTHROPIC_API_KEY=${ANTHROPIC_API_KEY}
 - CLAUDE_MODEL=${CLAUDE_MODEL}
 - CLAUDE_TEMPERATURE=${CLAUDE_TEMPERATURE}
 - MILVUS_HOST=milvus
 - MILVUS_PORT=19530
 depends_on:
... (121 more lines)

7.3 Infrastructure Services
Milvus 2.4 requires two backend services:
	Service
	Image
	Port
	Purpose

	etcd
	quay.io/coreos/etcd:v3.5.5
	2379
	Metadata storage for Milvus

	MinIO
	minio/minio:latest
	9000
	Object storage for Milvus segments

	Milvus
	milvusdb/milvus:v2.4-latest
	19530
	Vector database

7.4 Volume Mounts and Data Paths
	Volume
	Container Path
	Host Purpose

	./genomics/data
	/data
	Reference genome, FASTQ, BAM, VCF

	./rag/data
	/data
	ClinVar, AlphaMissense databases

	etcd_data
	/etcd
	Milvus metadata persistence

	minio_data
	/data
	Milvus segment persistence

	milvus_data
	/var/lib/milvus
	Milvus index persistence

	prometheus_data
	/prometheus
	Prometheus TSDB

	grafana_data
	/var/lib/grafana
	Grafana state and dashboards

7.5 GPU Resource Allocation
The GB10 GPU is shared across GPU-consuming services. Only one GPU-heavy workload should run at a time:
	Service
	GPU Usage
	Peak Memory
	Typical Duration

	Parabricks fq2bam
	70-90% GPU
	~40 GB
	20-45 min

	Parabricks DeepVariant
	80-95% GPU
	~60 GB
	10-35 min

	MolMIM NIM
	Moderate
	~8 GB
	Always running

	DiffDock NIM
	Moderate
	~8 GB
	Always running

	DCGM Exporter
	Minimal
	Minimal
	Always running

8. Deploy Genomics Pipeline (Stage 1)
8.1 Parabricks Container Setup
 BASH
	# Pull Parabricks container for ARM64
docker pull nvcr.io/nvidia/clara/clara-parabricks:4.6.0-1

Verify the image
docker images | grep parabricks
Expected: clara-parabricks 4.6.0-1

8.2 BWA-MEM2 Alignment (fq2bam)
The fq2bam tool performs GPU-accelerated read alignment using BWA-MEM2 and produces a sorted, duplicate-marked BAM file.
 BASH
	docker run --rm --gpus all \
 -v $(pwd)/genomics/data:/data \
 nvcr.io/nvidia/clara/clara-parabricks:4.6.0-1 \
 pbrun fq2bam \
 --ref /data/reference/GRCh38.fa \
 --in-fq /data/fastq/HG002_R1.fastq.gz /data/fastq/HG002_R2.fastq.gz \
 --out-bam /data/bam/HG002.bam \
 --num-gpus 1

Expected performance:
	Metric
	Value

	Runtime
	20-45 minutes

	GPU Utilization
	70-90%

	Peak GPU Memory
	~40 GB

	Output
	Sorted, duplicate-marked BAM (~100 GB)

8.3 DeepVariant Variant Calling
 BASH
	docker run --rm --gpus all \
 -v $(pwd)/genomics/data:/data \
 nvcr.io/nvidia/clara/clara-parabricks:4.6.0-1 \
 pbrun deepvariant \
 --ref /data/reference/GRCh38.fa \
 --in-bam /data/bam/HG002.bam \
 --out-variants /data/vcf/HG002.vcf.gz \
 --num-gpus 1

Expected performance:
	Metric
	Value

	Runtime
	10-35 minutes

	GPU Utilization
	80-95%

	Peak GPU Memory
	~60 GB

	Output
	Compressed VCF (gzipped)

8.4 VCF Output Verification
 BASH
	# Count total variants
zcat genomics/data/vcf/HG002.vcf.gz | grep -v '^#' | wc -l
Expected: ~11,700,000 (11.7M variants)

Count PASS variants with QUAL > 30
zcat genomics/data/vcf/HG002.vcf.gz | grep -v '^#' | \
 awk '$7 == "PASS" && $6 > 30' | wc -l
Expected: ~3,500,000 (3.5M)

Count SNPs vs Indels
zcat genomics/data/vcf/HG002.vcf.gz | grep -v '^#' | \
 awk '{if(length($4)==1 && length($5)==1) print "SNP"; else print "INDEL"}' | \
 sort | uniq -c
Expected: ~4,200,000 SNPs, ~1,000,000 indels

VCF output summary:
	Metric
	Expected Value

	Total variants
	~11.7M

	PASS variants (QUAL > 30)
	~3.5M

	SNPs
	~4.2M

	Indels
	~1.0M

	Coding region variants
	~35,000

8.5 Genomics Portal (Port 5000)
After genomics processing, start the portal:
 BASH
	docker compose up -d genomics-portal

Verify
curl -s http://localhost:5000/health
Expected: {"status": "healthy"}

Access the Genomics Portal at http://<dgx-spark-ip>:5000 to browse VCF results.
8.6 Performance Benchmarks
	Step
	Wall Time
	GPU Util
	Peak Memory
	Output Size

	fq2bam (alignment)
	20-45 min
	70-90%
	~40 GB
	~100 GB BAM

	DeepVariant (calling)
	10-35 min
	80-95%
	~60 GB
	~1 GB VCF.gz

	Total Stage 1
	30-80 min
	—
	—
	—

9. Deploy RAG Chat Pipeline (Stage 2)
9.1 Milvus Vector Database Setup
 BASH
	# Start Milvus and its dependencies
docker compose up -d etcd minio milvus attu

Wait for Milvus to be ready (30-60 seconds)
sleep 30

Verify Milvus is running
curl -s http://localhost:19530/v1/health/ready
Expected: {"status":"ok"}

Verify Attu UI
curl -s -o /dev/null -w "%{http_code}" http://localhost:8000
Expected: 200

9.2 Collection Schema
Create the genomic_evidence collection with 17 fields:
 PYTHON
	from pymilvus import connections, Collection, FieldSchema, CollectionSchema, DataType, utility

Connect to Milvus
connections.connect(host="localhost", port=19530)

Define schema with 17 fields
fields = [
 FieldSchema(name="id", dtype=DataType.INT64, is_primary=True, auto_id=True),
 FieldSchema(name="embedding", dtype=DataType.FLOAT_VECTOR, dim=384),
 FieldSchema(name="chrom", dtype=DataType.VARCHAR, max_length=10),
 FieldSchema(name="pos", dtype=DataType.INT64),
 FieldSchema(name="ref", dtype=DataType.VARCHAR, max_length=500),
 FieldSchema(name="alt", dtype=DataType.VARCHAR, max_length=500),
 FieldSchema(name="qual", dtype=DataType.FLOAT),
 FieldSchema(name="gene", dtype=DataType.VARCHAR, max_length=100),
 FieldSchema(name="consequence", dtype=DataType.VARCHAR, max_length=200),
 FieldSchema(name="impact", dtype=DataType.VARCHAR, max_length=20),
 FieldSchema(name="genotype", dtype=DataType.VARCHAR, max_length=10),
 FieldSchema(name="text_summary", dtype=DataType.VARCHAR, max_length=5000),
 FieldSchema(name="clinical_significance", dtype=DataType.VARCHAR, max_length=200),
 FieldSchema(name="rsid", dtype=DataType.VARCHAR, max_length=20),
 FieldSchema(name="disease_associations", dtype=DataType.VARCHAR, max_length=2000),
 FieldSchema(name="am_pathogenicity", dtype=DataType.FLOAT),
 FieldSchema(name="am_class", dtype=DataType.VARCHAR, max_length=20),
]

schema = CollectionSchema(fields, description="Genomic evidence for RAG")
collection = Collection("genomic_evidence", schema)

Create IVF_FLAT index on embedding field
index_params = {
 "metric_type": "COSINE",
 "index_type": "IVF_FLAT",
 "params": {"nlist": 1024}
}
collection.create_index("embedding", index_params)

Load collection into memory
collection.load()

print(f"Collection created: {collection.name}")
print(f"Schema fields: {len(fields)}")

Collection schema reference:
	#
	Field
	Type
	Details

	1
	id
	INT64
	Primary key, auto-generated

	2
	embedding
	FLOAT_VECTOR
	384 dimensions (BGE-small-en-v1.5)

	3
	chrom
	VARCHAR(10)
	Chromosome (chr1-22, chrX, chrY)

	4
	pos
	INT64
	Genomic position

	5
	ref
	VARCHAR(500)
	Reference allele

	6
	alt
	VARCHAR(500)
	Alternate allele

	7
	qual
	FLOAT
	Variant quality score

	8
	gene
	VARCHAR(100)
	Gene symbol

	9
	consequence
	VARCHAR(200)
	VEP functional consequence

	10
	impact
	VARCHAR(20)
	HIGH, MODERATE, LOW, MODIFIER

	11
	genotype
	VARCHAR(10)
	Sample genotype (e.g., 0/1, 1/1)

	12
	text_summary
	VARCHAR(5000)
	Natural-language variant summary

	13
	clinical_significance
	VARCHAR(200)
	ClinVar classification

	14
	rsid
	VARCHAR(20)
	dbSNP identifier

	15
	disease_associations
	VARCHAR(2000)
	Associated diseases/conditions

	16
	am_pathogenicity
	FLOAT
	AlphaMissense score (0.0-1.0)

	17
	am_class
	VARCHAR(20)
	pathogenic, ambiguous, or benign

9.3 Variant Annotation Pipeline
The annotation pipeline enriches VCF variants with data from three sources:
 BASH
	# Run the annotation pipeline
python3 rag/annotation/clinvar.py \
 --vcf genomics/data/vcf/HG002.vcf.gz \
 --clinvar rag/data/clinvar/clinvar.vcf.gz \
 --output rag/data/annotated_clinvar.tsv

python3 rag/annotation/alphamissense.py \
 --vcf genomics/data/vcf/HG002.vcf.gz \
 --am rag/data/alphamissense/AlphaMissense_hg38.tsv.gz \
 --output rag/data/annotated_am.tsv

python3 rag/annotation/vep.py \
 --vcf genomics/data/vcf/HG002.vcf.gz \
 --output rag/data/annotated_vep.tsv

Expected annotation matches:
	Source
	Total Records
	Patient Matches

	ClinVar
	4,100,000
	~35,616

	AlphaMissense
	71,697,560
	~6,831 (ClinVar-matched with predictions)

	VEP
	Per-variant
	All coding variants

9.4 BGE Embedding and Indexing
 PYTHON
	from sentence_transformers import SentenceTransformer
from pymilvus import connections, Collection

Load embedding model
model = SentenceTransformer('BAAI/bge-small-en-v1.5') # 384 dimensions

Connect to Milvus
connections.connect(host="localhost", port=19530)
collection = Collection("genomic_evidence")

Example: embed and insert a variant
text = "chr9:35065263 G>A in VCP gene. ClinVar: Pathogenic. AlphaMissense: 0.87 (pathogenic). Consequence: missense_variant. Impact: MODERATE."
embedding = model.encode(text).tolist() # 384-dim vector

Insert into Milvus
data = [{
 "embedding": embedding,
 "chrom": "chr9",
 "pos": 35065263,
 "ref": "G",
 "alt": "A",
 "qual": 99.0,
 "gene": "VCP",
 "consequence": "missense_variant",
 "impact": "MODERATE",
 "genotype": "0/1",
 "text_summary": text,
 "clinical_significance": "Pathogenic",
 "rsid": "rs188935092",
 "disease_associations": "Inclusion body myopathy with Paget disease and frontotemporal dementia",
 "am_pathogenicity": 0.87,
 "am_class": "pathogenic"
}]

collection.insert(data)
collection.flush()

Milvus index configuration:
	Parameter
	Value

	Embedding Model
	BGE-small-en-v1.5

	Dimensions
	384

	Index Type
	IVF_FLAT

	Metric Type
	COSINE

	nlist
	1024

	nprobe (search)
	16

9.5 Anthropic Claude Integration
 PYTHON
	import anthropic

client = anthropic.Anthropic(api_key=os.environ["ANTHROPIC_API_KEY"])

def query_claude(question: str, context: str) -> str:
 """Send RAG query to Claude with retrieved genomic context."""
 response = client.messages.create(
 model="claude-sonnet-4-20250514",
 max_tokens=4096,
 temperature=0.3,
 messages=[{
 "role": "user",
 "content": f"""You are a genomics expert. Answer the question using the provided genomic evidence.

Context:
{context}

Question: {question}"""
 }]
)
 return response.content[0].text

Claude configuration:
	Parameter
	Value

	Model
	claude-sonnet-4-20250514

	Temperature
	0.3

	Max Tokens
	4096

9.6 Knowledge Base
The platform includes a curated knowledge base of 201 genes across 13 therapeutic areas, with 171 genes (85%) classified as druggable.
	Metric
	Value

	Total genes
	201

	Therapeutic areas
	13

	Druggable genes
	171 (85%)

9.7 RAG API and Streamlit Chat
 BASH
	# Start RAG API and Chat services
docker compose up -d rag-api streamlit-chat

Verify RAG API
curl -s http://localhost:5001/health
Expected: {"status": "healthy"}

Verify Streamlit Chat
curl -s -o /dev/null -w "%{http_code}" http://localhost:8501
Expected: 200

Access the Streamlit Chat at http://<dgx-spark-ip>:8501 for conversational variant analysis.

10. Deploy Drug Discovery Pipeline (Stage 3)
10.1 BioNeMo NIM Services
 BASH
	# Pull BioNeMo containers (requires NGC authentication)
docker pull nvcr.io/nvidia/clara/bionemo-molmim:1.0
docker pull nvcr.io/nvidia/clara/diffdock:1.0

Start NIM services
docker compose up -d molmim diffdock

Wait for models to load (may take 2-5 minutes)
sleep 120

Verify MolMIM
curl -s http://localhost:8001/v1/health/ready
Expected: {"status": "ready"}

Verify DiffDock
curl -s http://localhost:8002/v1/health/ready
Expected: {"status": "ready"}

10.2 10-Stage Pipeline Detail
	Stage
	Name
	Input
	Output
	Key Operations

	1
	Initialize
	Config + target gene
	PipelineConfig
	Validate parameters, create run ID

	2
	Normalize Target
	Gene symbol
	Normalized target
	Map to UniProt, canonical name

	3
	Structure Discovery
	UniProt ID
	PDB structure list
	Query RCSB PDB, score by resolution

	4
	Structure Preparation
	PDB IDs
	Prepared structures
	Download PDB, extract binding sites

	5
	Molecule Generation
	Seed SMILES + protein
	Generated SMILES
	MolMIM NIM (Port 8001)

	6
	Chemistry QC
	SMILES list
	Filtered SMILES
	Lipinski, QED, TPSA checks

	7
	Conformer Generation
	Filtered SMILES
	3D conformers (SDF)
	RDKit conformer embedding

	8
	Molecular Docking
	Conformers + protein
	Docking scores
	DiffDock NIM (Port 8002)

	9
	Composite Ranking
	All scores
	Ranked candidates
	Weighted composite formula

	10
	Reporting
	Ranked candidates
	PDF report
	Visualizations, recommendations

10.3 Structure Retrieval and Scoring
 PYTHON
	import requests

def search_pdb_structures(uniprot_id: str) -> list:
 """Search RCSB PDB for protein structures by UniProt ID."""
 url = "https://search.rcsb.org/rcsbsearch/v2/query"
 query = {
 "query": {
 "type": "terminal",
 "service": "text",
 "parameters": {
 "attribute": "rcsb_polymer_entity_container_identifiers.reference_sequence_identifiers.database_accession",
 "operator": "exact_match",
 "value": uniprot_id
 }
 },
 "return_type": "entry"
 }
 response = requests.post(url, json=query)
 return response.json().get("result_set", [])

10.4 Molecule Generation (MolMIM)
 PYTHON
	import requests

def generate_molecules(seed_smiles: str, num_candidates: int = 100) -> list:
 """Generate molecule candidates using MolMIM NIM."""
 response = requests.post(
 "http://localhost:8001/generate",
 json={
 "smiles": seed_smiles,
 "num_molecules": num_candidates,
 "algorithm": "CMA-ES",
 "property_name": "QED",
 "min_similarity": 0.3,
 "particles": 30,
 "iterations": 10
 }
)
 return response.json()["generated_molecules"]

10.5 Molecular Docking (DiffDock)
 PYTHON
	def dock_molecule(protein_pdb: str, ligand_sdf: str) -> dict:
 """Score binding affinity using DiffDock NIM."""
 response = requests.post(
 "http://localhost:8002/molecular-docking/diffdock/generate",
 json={
 "protein": protein_pdb,
 "ligand": ligand_sdf,
 "num_poses": 10
 }
)
 return response.json()

10.6 Drug-Likeness Scoring
Drug-likeness is assessed using three criteria:
Lipinski Rule of Five:
	Property
	Threshold
	Description

	Molecular Weight
	<= 500 Da
	Size constraint

	LogP
	<= 5
	Lipophilicity

	H-Bond Donors (HBD)
	<= 5
	Polar surface groups

	H-Bond Acceptors (HBA)
	<= 10
	Polar surface groups

Additional thresholds:
	Metric
	Threshold
	Interpretation

	QED
	> 0.67
	Drug-like

	TPSA
	< 140 Angstrom squared
	Good oral bioavailability

 PYTHON
	from rdkit import Chem
from rdkit.Chem import Descriptors, QED

def assess_drug_likeness(smiles: str) -> dict:
 """Evaluate drug-likeness using Lipinski, QED, and TPSA."""
 mol = Chem.MolFromSmiles(smiles)
 if mol is None:
 return {"valid": False}

 mw = Descriptors.MolWt(mol)
 logp = Descriptors.MolLogP(mol)
 hbd = Descriptors.NumHDonors(mol)
 hba = Descriptors.NumHAcceptors(mol)
 tpsa = Descriptors.TPSA(mol)
 qed_score = QED.qed(mol)

 lipinski_pass = (mw <= 500 and logp <= 5 and hbd <= 5 and hba <= 10)

 return {
 "valid": True,
 "mw": mw,
 "logp": logp,
 "hbd": hbd,
 "hba": hba,
 "tpsa": tpsa,
 "qed": qed_score,
 "lipinski_pass": lipinski_pass,
 "drug_like": qed_score > 0.67,
 "oral_bioavail": tpsa < 140
 }

10.7 Composite Ranking Formula
Candidates are ranked using a weighted composite score:
	composite = 0.30 * generation_score + 0.40 * docking_score_normalized + 0.30 * qed_score

Docking score normalization:
 PYTHON
	def normalize_docking_score(dock_score: float) -> float:
 """Normalize docking score to [0, 1] range.
 More negative = better binding = higher normalized score."""
 return max(0.0, min(1.0, (10.0 + dock_score) / 20.0))

	Raw Docking Score
	Normalized Score
	Interpretation

	-10.0 kcal/mol
	0.00
	Excellent binding

	-8.0 kcal/mol
	0.10
	Strong binding

	-6.0 kcal/mol
	0.20
	Moderate binding

	0.0 kcal/mol
	0.50
	Weak binding

	+10.0 kcal/mol
	1.00
	No binding

	Note: The normalization maps more negative (better) docking scores to lower normalized values. In the composite formula, the docking component rewards lower (better) scores.

Composite score weights:
	Component
	Weight
	Source

	Generation Score
	30%
	MolMIM similarity/property score

	Docking Score (normalized)
	40%
	DiffDock binding affinity

	QED Score
	30%
	RDKit quantitative drug-likeness

10.8 Discovery UI and Portal
 BASH
	# Start Discovery services
docker compose up -d discovery-ui discovery-portal

Verify Discovery UI
curl -s -o /dev/null -w "%{http_code}" http://localhost:8505
Expected: 200

Verify Discovery Portal
curl -s -o /dev/null -w "%{http_code}" http://localhost:8510
Expected: 200

• Discovery UI (Port 8505): Interactive pipeline execution interface
• Discovery Portal (Port 8510): Results browser and reporting portal
10.9 PDF Report Generation
The final pipeline stage generates a PDF report containing:
• Target gene and variant summary
• PDB structure details with binding site analysis
• Top-ranked candidates with SMILES, scores, and 2D depictions
• Docking poses and binding affinity plots
• Lipinski and QED compliance table
• Composite score ranking
11. Nextflow Orchestration
11.1 DSL2 Pipeline Architecture
The HCLS AI Factory uses Nextflow DSL2 for pipeline orchestration. Each pipeline stage is defined as a separate process, with channels connecting inputs and outputs.
11.2 Pipeline Modes
	Mode
	Description
	Stages Executed

	full
	Complete end-to-end pipeline
	1 + 2 + 3 (all stages)

	target
	Start from target gene (skip genomics)
	2 + 3

	drug
	Drug discovery only (pre-existing target)
	3 only

	demo
	VCP demo with pre-loaded data
	1 + 2 + 3 (demo subset)

	genomics_only
	Genomics pipeline only
	1 only

11.3 Execution Profiles
	Profile
	Description
	Use Case

	standard
	Local execution, default settings
	Development

	docker
	Docker container execution
	Standard deployment

	singularity
	Singularity container execution
	HPC environments

	dgx_spark
	Optimized for DGX Spark hardware
	Production on DGX Spark

	slurm
	SLURM workload manager
	Multi-node clusters

	test
	Minimal test data, fast execution
	CI/CD testing

11.4 Pipeline Launcher
 BASH
	# Run with the pipeline launcher script
python3 scripts/run_pipeline.py \
 --mode full \
 --profile dgx_spark \
 --fastq genomics/data/fastq/ \
 --reference genomics/data/reference/GRCh38.fa

Or run directly with Nextflow
nextflow run main.nf \
 -profile dgx_spark \
 --mode full \
 --fastq_dir genomics/data/fastq/ \
 --reference genomics/data/reference/GRCh38.fa \
 --outdir results/

11.5 Pipeline Configuration
 GROOVY
	// nextflow.config
params {
 // Pipeline mode
 mode = 'full'

 // Input paths
 fastq_dir = 'genomics/data/fastq'
 reference = 'genomics/data/reference/GRCh38.fa'
 outdir = 'results'

 // Service endpoints
 milvus_host = 'localhost'
 milvus_port = 19530
 molmim_url = 'http://localhost:8001'
 diffdock_url = 'http://localhost:8002'

 // Drug discovery parameters
 num_candidates = 100
 min_qed = 0.67
 min_dock_score = -6.0
}

profiles {
 dgx_spark {
 docker.enabled = true
 docker.runOptions = '--gpus all'
 process {
 executor = 'local'
 memory = '120 GB'
 cpus = 128
 }
 }

 test {
 params.mode = 'demo'
 process {
 memory = '16 GB'
 cpus = 4
 }
 }
}

12. Service Startup and Health
12.1 start-services.sh Startup Order
Services should be started in dependency order:
 BASH
	#!/bin/bash
start-services.sh — Start all HCLS AI Factory services

set -e

echo "Starting infrastructure services..."
docker compose up -d etcd minio
sleep 10

echo "Starting Milvus..."
docker compose up -d milvus attu
sleep 30

echo "Starting BioNeMo NIM services..."
docker compose up -d molmim diffdock
sleep 120

echo "Starting application services..."
docker compose up -d genomics-portal rag-api streamlit-chat discovery-ui discovery-portal landing-page

echo "Starting monitoring..."
docker compose up -d prometheus grafana node-exporter dcgm-exporter

echo "All services started. Running health checks..."
sleep 10
bash scripts/validate_deployment.sh

12.2 Landing Page (Port 8080)
The landing page at http://<dgx-spark-ip>:8080 provides a directory of all services with links and status indicators.
12.3 Health Check Endpoints
	Service
	Port
	Health Endpoint
	Expected Response

	Genomics Portal
	5000
	/health
	{"status": "healthy"}

	RAG API
	5001
	/health
	{"status": "healthy"}

	Milvus
	19530
	/v1/health/ready
	{"status": "ok"}

	Attu
	8000
	/api/health
	HTTP 200

	Streamlit Chat
	8501
	/healthz
	HTTP 200

	MolMIM NIM
	8001
	/v1/health/ready
	{"status": "ready"}

	DiffDock NIM
	8002
	/v1/health/ready
	{"status": "ready"}

	Discovery UI
	8505
	/health
	{"status": "healthy"}

	Discovery Portal
	8510
	/health
	{"status": "healthy"}

	Grafana
	3000
	/api/health
	{"status": "ok"}

	Prometheus
	9099
	/-/healthy
	HTTP 200

	Node Exporter
	9100
	/metrics
	Metrics text

	DCGM Exporter
	9400
	/metrics
	Metrics text

12.4 Verifying All Services
 BASH
	#!/bin/bash
validate_deployment.sh — Verify all services are running

declare -A SERVICES=(
 ["Landing Page"]="http://localhost:8080"
 ["Genomics Portal"]="http://localhost:5000/health"
 ["RAG API"]="http://localhost:5001/health"
 ["Milvus"]="http://localhost:19530/v1/health/ready"
 ["Attu"]="http://localhost:8000"
 ["Streamlit Chat"]="http://localhost:8501/healthz"
 ["MolMIM"]="http://localhost:8001/v1/health/ready"
 ["DiffDock"]="http://localhost:8002/v1/health/ready"
 ["Discovery UI"]="http://localhost:8505/health"
 ["Discovery Portal"]="http://localhost:8510/health"
 ["Grafana"]="http://localhost:3000/api/health"
 ["Prometheus"]="http://localhost:9099/-/healthy"
 ["Node Exporter"]="http://localhost:9100/metrics"
 ["DCGM Exporter"]="http://localhost:9400/metrics"
)

echo "=== HCLS AI Factory Health Check ==="
for service in "${!SERVICES[@]}"; do
 url="${SERVICES[$service]}"
 status=$(curl -s -o /dev/null -w "%{http_code}" "$url" 2>/dev/null || echo "ERR")
 if ["$status" == "200"]; then
 echo "[OK] $service ($url)"
 else
 echo "[FAIL] $service ($url) — HTTP $status"
 fi
done

13. Monitoring and Observability
13.1 Grafana Setup (Port 3000)
 BASH
	# Start Grafana
docker compose up -d grafana

Access at http://<dgx-spark-ip>:3000
Default credentials: admin / changeme

Default Grafana credentials:
	Parameter
	Value

	Username
	admin

	Password
	changeme

13.2 Prometheus Configuration (Port 9099)
 YAML
	# monitoring/prometheus/prometheus.yml
global:
 scrape_interval: 15s

scrape_configs:
 - job_name: 'node-exporter'
 static_configs:
 - targets: ['node-exporter:9100']

 - job_name: 'dcgm-exporter'
 static_configs:
 - targets: ['dcgm-exporter:9400']

 - job_name: 'rag-api'
 static_configs:
 - targets: ['rag-api:5001']
 metrics_path: /metrics

 - job_name: 'prometheus'
 static_configs:
 - targets: ['localhost:9090']

13.3 DCGM Exporter (Port 9400)
Key GPU metrics exposed by the DCGM Exporter:
	Metric
	Description

	DCGM_FI_DEV_GPU_UTIL
	GPU utilization percentage

	DCGM_FI_DEV_FB_USED
	GPU framebuffer memory used (MB)

	DCGM_FI_DEV_FB_FREE
	GPU framebuffer memory free (MB)

	DCGM_FI_DEV_GPU_TEMP
	GPU temperature (Celsius)

	DCGM_FI_DEV_POWER_USAGE
	Power consumption (Watts)

	DCGM_FI_DEV_SM_CLOCK
	Streaming multiprocessor clock (MHz)

	DCGM_FI_DEV_MEM_CLOCK
	Memory clock (MHz)

13.4 Node Exporter (Port 9100)
The Node Exporter provides host system metrics — CPU, memory, disk, and network utilization — critical for monitoring the DGX Spark ARM64 system.
13.5 Key Dashboard Panels
Recommended Grafana dashboard panels:

	Panel
	Data Source
	Purpose

	GPU Utilization
	DCGM
	Track fq2bam and DeepVariant GPU usage

	GPU Memory
	DCGM
	Monitor peak memory during genomics

	CPU Utilization
	Node Exporter
	ARM64 core usage across 144 cores

	Memory Usage
	Node Exporter
	Unified 128 GB LPDDR5x utilization

	Disk I/O
	Node Exporter
	NVMe throughput for FASTQ/BAM processing

	Network I/O
	Node Exporter
	API call throughput

	Container Status
	Docker
	Service health overview

13.6 Alert Configuration
 YAML
	# Example alert rules for Prometheus
groups:
 - name: hcls-alerts
 rules:
 - alert: GPUMemoryHigh
 expr: DCGM_FI_DEV_FB_USED / (DCGM_FI_DEV_FB_USED + DCGM_FI_DEV_FB_FREE) > 0.95
 for: 5m
 labels:
 severity: warning
 annotations:
 summary: "GPU memory usage above 95%"

 - alert: ServiceDown
 expr: up == 0
 for: 2m
 labels:
 severity: critical
 annotations:
 summary: "Service {{ $labels.job }} is down"

14. Security Configuration
14.1 API Key Management
 BASH
	# Store API keys in .env file (not committed to git)
echo ".env" >> .gitignore

Set restrictive permissions
chmod 600 .env

Verify .env is in .gitignore
grep -q '.env' .gitignore && echo "OK: .env is gitignored"

Never commit API keys to version control. Use environment variables exclusively:
	Variable
	Sensitivity
	Storage

	ANTHROPIC_API_KEY
	High
	.env file, chmod 600

	NGC_API_KEY
	High
	.env file, chmod 600

	GRAFANA_PASSWORD
	Medium
	.env file

14.2 Docker Network Isolation
Docker Compose creates an isolated bridge network. Only explicitly exposed ports are accessible from the host:
 BASH
	# Verify network isolation
docker network ls | grep hcls
docker network inspect hcls-ai-factory_default

14.3 Container Security
Best practices applied to the deployment:
• Run application containers as non-root users where possible
• Use read-only filesystem mounts for reference data
• Limit container capabilities with --cap-drop ALL
• Pin container image versions (no latest tags in production)
14.4 Data Access Controls
 BASH
	# Set appropriate permissions on data directories
chmod -R 750 genomics/data/
chmod -R 750 rag/data/
chmod -R 750 discovery/data/

Ensure only the deployment user can access sensitive data
chown -R $(whoami):$(whoami) genomics/data/ rag/data/ discovery/data/

15. Data Management
15.1 Storage Layout
	Directory
	Contents
	Size
	Persistence

	genomics/data/reference/
	GRCh38 genome
	3.1 GB
	Permanent

	genomics/data/fastq/
	Input FASTQ files
	~200 GB
	Keep until processed

	genomics/data/bam/
	Alignment output
	~100 GB
	Delete after VCF

	genomics/data/vcf/
	Variant calls
	~1 GB
	Permanent

	rag/data/clinvar/
	ClinVar database
	~1.2 GB
	Permanent

	rag/data/alphamissense/
	AlphaMissense DB
	~4 GB
	Permanent

	milvus_data (Docker volume)
	Vector index
	~2 GB
	Permanent

	discovery/data/
	Structures, molecules
	Variable
	Per-run

15.2 Intermediate File Cleanup
BAM files are the largest intermediate output (~100 GB). Once the VCF has been verified, BAM files can be deleted to reclaim storage:
 BASH
	# Verify VCF is complete before deleting BAM
zcat genomics/data/vcf/HG002.vcf.gz | grep -v '^#' | wc -l
Confirm ~11.7M variants

Delete intermediate BAM
rm -f genomics/data/bam/HG002.bam genomics/data/bam/HG002.bam.bai
echo "Reclaimed ~100 GB"

15.3 Milvus Data Persistence
Milvus data is stored in Docker volumes. To back up:
 BASH
	# Stop Milvus for consistent backup
docker compose stop milvus

Back up volumes
docker run --rm \
 -v hcls-ai-factory_milvus_data:/data \
 -v $(pwd)/backups:/backup \
 alpine tar czf /backup/milvus_data_$(date +%Y%m%d).tar.gz /data

Restart
docker compose start milvus

15.4 Backup Procedures
 BASH
	# Full backup script
#!/bin/bash
BACKUP_DIR=./backups/$(date +%Y%m%d)
mkdir -p $BACKUP_DIR

Back up VCF results
cp -r genomics/data/vcf/ $BACKUP_DIR/vcf/

Back up environment config (without secrets)
grep -v 'API_KEY' .env > $BACKUP_DIR/env_sanitized.txt

Back up Milvus volumes
docker compose stop milvus
for vol in milvus_data etcd_data minio_data; do
 docker run --rm \
 -v hcls-ai-factory_${vol}:/data \
 -v $(pwd)/$BACKUP_DIR:/backup \
 alpine tar czf /backup/${vol}.tar.gz /data
done
docker compose start milvus

echo "Backup complete: $BACKUP_DIR"

16. Performance Tuning
16.1 GPU Memory Management
The DGX Spark uses 128 GB unified LPDDR5x memory shared between CPU and GPU. Key considerations:
• Parabricks DeepVariant peaks at ~60 GB GPU memory — ensure other GPU services are idle during genomics processing
• MolMIM and DiffDock each require ~8 GB — they can co-exist during drug discovery
• Monitor with nvidia-smi and DCGM metrics during pipeline runs
 BASH
	# Monitor GPU memory in real-time
watch -n 1 nvidia-smi

Check unified memory allocation
nvidia-smi --query-gpu=memory.used,memory.free,memory.total --format=csv

16.2 Milvus Index Tuning
	Parameter
	Default
	Tuning Guidance

	nlist
	1024
	Increase for larger collections (trade build time for search quality)

	nprobe
	16
	Increase for higher recall (trade latency for accuracy)

	metric_type
	COSINE
	Use COSINE for normalized BGE embeddings

 PYTHON
	# Search with tuned parameters
search_params = {
 "metric_type": "COSINE",
 "params": {"nprobe": 16}
}

results = collection.search(
 data=[query_embedding],
 anns_field="embedding",
 param=search_params,
 limit=10,
 output_fields=["gene", "clinical_significance", "text_summary"]
)

16.3 Docker Resource Limits
 YAML
	# Example resource limits in docker-compose.yml
services:
 rag-api:
 deploy:
 resources:
 limits:
 memory: 16G
 cpus: '16'
 reservations:
 memory: 4G
 cpus: '4'

16.4 NVMe I/O Optimization
For FASTQ and BAM processing, I/O throughput is critical:
 BASH
	# Check NVMe performance
fio --name=seqread --rw=read --bs=1M --size=1G --numjobs=4 --runtime=10 --group_reporting

Ensure data directories are on NVMe
df -h genomics/data/

16.5 Pipeline Concurrency Settings
The Nextflow pipeline supports controlled concurrency:
 GROOVY
	// nextflow.config — concurrency settings
process {
 maxForks = 4 // Maximum parallel processes
 maxRetries = 2 // Retry failed processes
 errorStrategy = 'retry'
}

executor {
 queueSize = 8 // Maximum queued tasks
 pollInterval = '5 sec'
}

17. Troubleshooting Guide
17.1 Service Not Starting
 BASH
	# Check service logs
docker compose logs <service-name> --tail 50

Check if port is already in use
ss -tlnp | grep <port>

Restart a specific service
docker compose restart <service-name>

17.2 GPU Out of Memory
 BASH
	# Check current GPU memory usage
nvidia-smi

Kill any orphaned GPU processes
sudo fuser -v /dev/nvidia*

Reduce Parabricks memory by limiting GPU threads
Add --gpu-mem-limit flag if available

Ensure NIM services are stopped during genomics
docker compose stop molmim diffdock

17.3 Milvus Connection Issues
 BASH
	# Verify Milvus dependencies are running
docker compose ps etcd minio milvus

Check Milvus logs for errors
docker compose logs milvus --tail 100

Test connectivity
curl -s http://localhost:19530/v1/health/ready

Reset Milvus if corrupted
docker compose down milvus etcd minio
docker volume rm hcls-ai-factory_milvus_data hcls-ai-factory_etcd_data hcls-ai-factory_minio_data
docker compose up -d etcd minio milvus

17.4 BioNeMo NIM Not Ready
 BASH
	# NIM services may take 2-5 minutes to load models
Check logs for model loading progress
docker compose logs molmim --tail 50
docker compose logs diffdock --tail 50

Verify GPU is available for NIM
nvidia-smi | grep -i "molmim\|diffdock"

Restart if stuck
docker compose restart molmim diffdock

17.5 Parabricks Failures
	Error
	Cause
	Resolution

	CUDA out of memory
	Insufficient GPU memory
	Stop other GPU services first

	Reference index not found
	Missing .fai file
	Run samtools faidx GRCh38.fa

	Input file not found
	Wrong FASTQ path
	Check volume mount paths

	Unsupported GPU
	Driver mismatch
	Update NVIDIA driver

17.6 Claude API Errors
	Error
	Cause
	Resolution

	401 Unauthorized
	Invalid API key
	Verify ANTHROPIC_API_KEY in .env

	429 Rate Limited
	Too many requests
	Implement exponential backoff

	500 Server Error
	Anthropic service issue
	Retry after 30 seconds

	Connection refused
	No internet
	Check network connectivity

17.7 Docker Issues
 BASH
	# Docker daemon not running
sudo systemctl start docker
sudo systemctl enable docker

Disk space full
docker system prune -a --volumes
df -h /var/lib/docker

Permission denied
sudo usermod -aG docker $USER
newgrp docker

17.8 Common Error Messages Table
	Error Message
	Service
	Resolution

	Connection refused on port 19530
	Milvus
	Start etcd + MinIO first, then Milvus

	NVIDIA driver not found
	Docker
	Install NVIDIA Container Toolkit

	Model not loaded
	MolMIM/DiffDock
	Wait 2-5 minutes for model loading

	Collection not found
	Milvus
	Run schema creation script (Section 9.2)

	API key not set
	RAG API
	Set ANTHROPIC_API_KEY in .env

	Out of disk space
	Parabricks
	Clean BAM intermediates, expand storage

	Permission denied: /data
	Any
	Check volume mount permissions

18. VCP/FTD Demo Walkthrough
18.1 Demo Overview
The VCP (Valosin-Containing Protein) / FTD (Frontotemporal Dementia) demo showcases the full three-stage pipeline using a known pathogenic variant:
	Parameter
	Value

	Variant
	rs188935092

	Location
	chr9:35065263 G>A

	Gene
	VCP

	ClinVar Classification
	Pathogenic

	AlphaMissense Score
	0.87 (pathogenic, threshold >0.564)

	Disease
	Inclusion body myopathy with Paget disease and FTD

	Seed Molecule
	CB-5083 (VCP/p97 inhibitor)

	PDB Structures
	8OOI, 9DIL, 7K56, 5FTK

	Binding Domain
	D2 ATPase domain, ~450 cubic angstroms

	Druggability Score
	0.92

18.2 Pre-Demo Setup
 BASH
	# Ensure all services are running
bash scripts/validate_deployment.sh

Verify Milvus has the VCP variant loaded
python3 -c "
from pymilvus import connections, Collection
connections.connect(host='localhost', port=19530)
col = Collection('genomic_evidence')
col.load()
results = col.query('gene == \"VCP\"', output_fields=['rsid', 'clinical_significance', 'am_pathogenicity'])
print(f'VCP variants found: {len(results)}')
for r in results[:3]:
 print(r)
"

18.3 Running the Demo
 BASH
	# Run the demo pipeline mode
python3 scripts/run_pipeline.py --mode demo

Or via Nextflow
nextflow run main.nf -profile dgx_spark --mode demo

Step-by-step execution:
1. Stage 1 (Genomics): Process demo FASTQ subset through Parabricks fq2bam and DeepVariant
2. Stage 2 (RAG): Annotate VCP variant with ClinVar (Pathogenic) and AlphaMissense (0.87), embed into Milvus, query Claude for clinical interpretation
3. Stage 3 (Drug Discovery): Retrieve PDB structures (8OOI, 9DIL, 7K56, 5FTK), generate molecules from CB-5083 seed via MolMIM, dock with DiffDock, rank by composite score
18.4 Expected Results
	Metric
	Expected Value

	Candidates generated
	100

	Pass Lipinski Rule of Five
	87

	QED > 0.67 (drug-like)
	72

	Top docking scores
	-8.2 to -11.4 kcal/mol

	Composite score range
	0.68 - 0.89

Top candidate characteristics:
	Property
	Range

	Molecular Weight
	300 - 500 Da

	LogP
	1.5 - 4.5

	QED
	0.67 - 0.92

	TPSA
	40 - 130 squared angstroms

	Docking Score
	-8.2 to -11.4 kcal/mol

	Composite Score
	0.68 - 0.89

19. Scaling Beyond DGX Spark
19.1 Phase 1 to Phase 3 Roadmap
	Phase
	Hardware
	Scale
	Use Case

	Phase 1
	DGX Spark
	Single workstation
	Development, demos, single-patient analysis

	Phase 2
	DGX B200
	Single server, multi-GPU
	Production cohort analysis

	Phase 3
	DGX SuperPOD
	Multi-node cluster
	Population-scale genomics

19.2 Kubernetes Migration Path
For Phase 2 and beyond, migrate from Docker Compose to Kubernetes:
• Replace docker-compose.yml with Helm charts
• Use NVIDIA GPU Operator for GPU scheduling
• Deploy Milvus Cluster mode (distributed) instead of standalone
• Use persistent volume claims (PVCs) for data storage
• Implement horizontal pod autoscaling for RAG API
19.3 Multi-GPU Considerations
• Parabricks supports --num-gpus for multi-GPU parallelism
• MolMIM and DiffDock can be replicated across GPUs
• Milvus supports distributed deployment with multiple query nodes
19.4 NVIDIA FLARE for Federated Learning
For multi-institutional deployments, NVIDIA FLARE enables federated learning across DGX Spark nodes without sharing raw patient data.

20. Appendix A: Complete Configuration Reference
20.1 All Environment Variables
	Variable
	Default
	Description

	ANTHROPIC_API_KEY
	(required)
	Anthropic API key for Claude

	NGC_API_KEY
	(required)
	NVIDIA NGC API key

	REFERENCE_GENOME
	/data/reference/GRCh38.fa
	Path to reference genome

	MILVUS_HOST
	localhost
	Milvus server hostname

	MILVUS_PORT
	19530
	Milvus server port

	MOLMIM_URL
	http://localhost:8001
	MolMIM NIM endpoint

	DIFFDOCK_URL
	http://localhost:8002
	DiffDock NIM endpoint

	CLAUDE_MODEL
	claude-sonnet-4-20250514
	Claude model identifier

	CLAUDE_TEMPERATURE
	0.3
	Claude sampling temperature

	PIPELINE_MODE
	full
	Pipeline execution mode

	NUM_CANDIDATES
	100
	Number of molecules to generate

	MIN_QED
	0.67
	Minimum QED threshold

	MIN_DOCK_SCORE
	-6.0
	Minimum docking score (kcal/mol)

	GRAFANA_USER
	admin
	Grafana admin username

	GRAFANA_PASSWORD
	changeme
	Grafana admin password

20.2 AlphaMissense Thresholds
	Classification
	Score Range

	Pathogenic
	> 0.564

	Ambiguous
	0.34 - 0.564

	Benign
	< 0.34

20.3 Scoring Weights
	Component
	Weight

	Generation Score
	0.30 (30%)

	Docking Score (normalized)
	0.40 (40%)

	QED Score
	0.30 (30%)

20.4 Drug-Likeness Thresholds
	Property
	Threshold
	Rule

	Molecular Weight
	<= 500 Da
	Lipinski

	LogP
	<= 5
	Lipinski

	H-Bond Donors
	<= 5
	Lipinski

	H-Bond Acceptors
	<= 10
	Lipinski

	QED
	> 0.67
	Drug-likeness

	TPSA
	< 140 squared angstroms
	Oral bioavailability

20.5 Docking Score Interpretation
	Score (kcal/mol)
	Binding Affinity
	Assessment

	< -10.0
	Excellent
	Strong candidate

	-8.0 to -10.0
	Strong
	Viable candidate

	-6.0 to -8.0
	Moderate
	Marginal candidate

	> -6.0
	Weak
	Poor candidate

Normalization formula:
	normalized = max(0, min(1, (10 + dock_score) / 20))

21. Appendix B: API Reference
21.1 MolMIM API (Port 8001)
Generate Molecules:
 JSON
	// POST http://localhost:8001/generate
// Request:
{
 "smiles": "CC1=CC=C(C=C1)C(=O)NC2=CC=CC=C2",
 "num_molecules": 100,
 "algorithm": "CMA-ES",
 "property_name": "QED",
 "min_similarity": 0.3,
 "particles": 30,
 "iterations": 10
}

// Response:
{
 "generated_molecules": [
 {
 "smiles": "CC1=CC=C(C=C1)C(=O)NC2=CC=C(F)C=C2",
 "score": 0.85,
 "similarity": 0.78
 }
]
}

Health Check:
	GET http://localhost:8001/v1/health/ready
Response: {"status": "ready"}

21.2 DiffDock API (Port 8002)
Molecular Docking:
 JSON
	// POST http://localhost:8002/molecular-docking/diffdock/generate
// Request:
{
 "protein": "<PDB file content>",
 "ligand": "<SDF file content>",
 "num_poses": 10
}

// Response:
{
 "poses": [
 {
 "pose_id": 0,
 "confidence": 0.95,
 "score": -9.7,
 "ligand_sdf": "<docked SDF content>"
 }
]
}

Health Check:
	GET http://localhost:8002/v1/health/ready
Response: {"status": "ready"}

21.3 RAG API Endpoints (Port 5001)
	Method
	Endpoint
	Description

	GET
	/health
	Service health check

	POST
	/query
	RAG query with context retrieval

	POST
	/search
	Vector similarity search

	GET
	/collections
	List Milvus collections

	GET
	/stats
	Collection statistics

RAG Query Example:
 JSON
	// POST http://localhost:5001/query
// Request:
{
 "question": "What pathogenic variants are found in the VCP gene?",
 "top_k": 10,
 "filters": {
 "gene": "VCP",
 "impact": "HIGH"
 }
}

// Response:
{
 "answer": "The VCP gene contains the variant rs188935092...",
 "sources": [
 {
 "gene": "VCP",
 "rsid": "rs188935092",
 "clinical_significance": "Pathogenic",
 "am_pathogenicity": 0.87,
 "similarity_score": 0.94
 }
],
 "model": "claude-sonnet-4-20250514",
 "tokens_used": 1847
}

21.4 Health Check Endpoints Summary
	Service
	Endpoint
	Method

	Genomics Portal
	/health
	GET

	RAG API
	/health
	GET

	Milvus
	/v1/health/ready
	GET

	Attu
	/api/health
	GET

	Streamlit Chat
	/healthz
	GET

	MolMIM
	/v1/health/ready
	GET

	DiffDock
	/v1/health/ready
	GET

	Discovery UI
	/health
	GET

	Discovery Portal
	/health
	GET

	Grafana
	/api/health
	GET

	Prometheus
	/-/healthy
	GET

	Node Exporter
	/metrics
	GET

	DCGM Exporter
	/metrics
	GET

22. Appendix C: Schema Definitions
22.1 Milvus Collection Schema
Collection: `genomic_evidence`
	#
	Field
	Data Type
	Constraints
	Description

	1
	id
	INT64
	Primary Key, Auto ID
	Unique record identifier

	2
	embedding
	FLOAT_VECTOR
	dim=384
	BGE-small-en-v1.5 embedding

	3
	chrom
	VARCHAR
	max_length=10
	Chromosome (chr1-22, chrX, chrY)

	4
	pos
	INT64
	—
	Genomic position (1-based)

	5
	ref
	VARCHAR
	max_length=500
	Reference allele

	6
	alt
	VARCHAR
	max_length=500
	Alternate allele

	7
	qual
	FLOAT
	—
	Variant quality score

	8
	gene
	VARCHAR
	max_length=100
	HGNC gene symbol

	9
	consequence
	VARCHAR
	max_length=200
	VEP consequence term

	10
	impact
	VARCHAR
	max_length=20
	HIGH/MODERATE/LOW/MODIFIER

	11
	genotype
	VARCHAR
	max_length=10
	Sample genotype (0/1, 1/1)

	12
	text_summary
	VARCHAR
	max_length=5000
	Natural-language summary

	13
	clinical_significance
	VARCHAR
	max_length=200
	ClinVar classification

	14
	rsid
	VARCHAR
	max_length=20
	dbSNP RS identifier

	15
	disease_associations
	VARCHAR
	max_length=2000
	Associated diseases

	16
	am_pathogenicity
	FLOAT
	0.0-1.0
	AlphaMissense pathogenicity

	17
	am_class
	VARCHAR
	max_length=20
	pathogenic/ambiguous/benign

Index configuration:
	Parameter
	Value

	Index Type
	IVF_FLAT

	Metric Type
	COSINE

	nlist
	1024

	nprobe (search)
	16

22.2 Pydantic Data Models
 PYTHON
	from pydantic import BaseModel, Field
from typing import List, Optional
from enum import Enum

class TargetHypothesis(BaseModel):
 """Genomic target identified from variant analysis."""
 gene: str
 variant_id: str
 rsid: Optional[str]
 clinical_significance: str
 am_pathogenicity: Optional[float]
 am_class: Optional[str]
 therapeutic_area: str
 druggability_score: float
 rationale: str

class StructureInfo(BaseModel):
 """PDB structure information for a target protein."""
 pdb_id: str
 resolution: float
 method: str
 chain: str
 binding_site_volume: Optional[float]

class StructureManifest(BaseModel):
 """Collection of structures for a target."""
 target_gene: str
 uniprot_id: str
 structures: List[StructureInfo]
 selected_structure: str

class MoleculeProperties(BaseModel):
 """Chemical properties of a generated molecule."""
 molecular_weight: float
 logp: float
 hbd: int
 hba: int
 tpsa: float
 qed: float
 lipinski_pass: bool

class GeneratedMolecule(BaseModel):
 """Molecule generated by MolMIM."""
 smiles: str
 generation_score: float
 similarity_to_seed: float
 properties: MoleculeProperties

class DockingResult(BaseModel):
 """Molecular docking result from DiffDock."""
 smiles: str
 dock_score: float # kcal/mol (negative = better)
 confidence: float
 pose_sdf: str

class RankedCandidate(BaseModel):
 """Final ranked drug candidate with composite score."""
 rank: int
 smiles: str
 generation_score: float
 dock_score: float
 dock_score_normalized: float
 qed: float
 composite_score: float # 0.3*gen + 0.4*dock + 0.3*qed
 lipinski_pass: bool
 properties: MoleculeProperties

class PipelineConfig(BaseModel):
 """Configuration for a pipeline run."""
 mode: str = "full"
 target_gene: Optional[str]
 seed_smiles: Optional[str]
 num_candidates: int = 100
 min_qed: float = 0.67
 min_dock_score: float = -6.0
... (16 more lines)

23. Appendix D: Docker Image Reference
23.1 All Container Images
	Service
	Image
	Tag
	Architecture

	Parabricks
	nvcr.io/nvidia/clara/clara-parabricks
	4.6.0-1
	ARM64 (aarch64)

	Milvus
	milvusdb/milvus
	v2.4-latest
	ARM64

	MolMIM
	nvcr.io/nvidia/clara/bionemo-molmim
	1.0
	ARM64

	DiffDock
	nvcr.io/nvidia/clara/diffdock
	1.0
	ARM64

	Grafana
	grafana/grafana
	10.2.2
	ARM64

	Prometheus
	prom/prometheus
	v2.48.0
	ARM64

	Node Exporter
	prom/node-exporter
	latest
	ARM64

	DCGM Exporter
	nvcr.io/nvidia/k8s/dcgm-exporter
	latest
	ARM64

	etcd
	quay.io/coreos/etcd
	v3.5.5
	ARM64

	MinIO
	minio/minio
	latest
	ARM64

	Attu
	zilliz/attu
	latest
	ARM64

23.2 ARM64 Compatibility Notes
The DGX Spark uses an ARM64 (aarch64) processor. All container images must be ARM64-compatible:
• NVIDIA NGC images for Parabricks, BioNeMo, and DCGM include ARM64 variants
• Community images (Grafana, Prometheus, MinIO, etcd) provide multi-arch manifests
• Custom application images must be built with --platform linux/arm64
• If building locally, ensure the base image supports ARM64
 BASH
	# Verify image architecture
docker inspect --format='{{.Architecture}}' <image-name>
Expected: arm64

Build for ARM64 explicitly
docker build --platform linux/arm64 -t my-service:latest ./my-service/

24. Appendix E: Validation Checklists
24.1 Pre-Deployment Checklist
	#
	Item
	Command / Check
	Expected
	

	1
	DGX Spark hardware
	uname -m
	aarch64
	

	2
	GPU detected
	nvidia-smi
	GB10 GPU listed
	

	3
	Docker installed
	docker --version
	24.0+
	

	4
	Docker Compose V2
	docker compose version
	v2.x
	

	5
	NVIDIA runtime
	`docker info \
	grep nvidia`
	nvidia listed

	6
	Python version
	python3 --version
	3.10+
	

	7
	Disk space
	df -h /
	>= 320 GB free
	

	8
	Reference genome
	ls genomics/data/reference/GRCh38.fa
	File exists, ~3.1 GB
	

	9
	ClinVar data
	ls rag/data/clinvar/clinvar.vcf.gz
	File exists, ~1.2 GB
	

	10
	AlphaMissense data
	ls rag/data/alphamissense/AlphaMissense_hg38.tsv.gz
	File exists, ~4 GB
	

	11
	API keys configured
	grep ANTHROPIC_API_KEY .env
	Key set (not empty)
	

	12
	NGC key configured
	grep NGC_API_KEY .env
	Key set (not empty)
	

	13
	.env permissions
	stat -c %a .env
	600
	

	14
	.env in .gitignore
	grep .env .gitignore
	Present
	

24.2 Post-Deployment Checklist
	#
	Item
	Command / Check
	Expected

	1
	All containers running
	docker compose ps
	14+ services "Up"

	2
	Landing Page
	curl http://localhost:8080
	HTTP 200

	3
	Genomics Portal
	curl http://localhost:5000/health
	{"status":"healthy"}

	4
	RAG API
	curl http://localhost:5001/health
	{"status":"healthy"}

	5
	Milvus ready
	curl http://localhost:19530/v1/health/ready
	{"status":"ok"}

	6
	Attu UI
	curl -o /dev/null -w "%{http_code}" http://localhost:8000
	200

	7
	Streamlit Chat
	curl -o /dev/null -w "%{http_code}" http://localhost:8501
	200

	8
	MolMIM ready
	curl http://localhost:8001/v1/health/ready
	{"status":"ready"}

	9
	DiffDock ready
	curl http://localhost:8002/v1/health/ready
	{"status":"ready"}

	10
	Discovery UI
	curl http://localhost:8505/health
	{"status":"healthy"}

	11
	Discovery Portal
	curl http://localhost:8510/health
	{"status":"healthy"}

	12
	Grafana
	curl http://localhost:3000/api/health
	{"status":"ok"}

	13
	Prometheus
	curl http://localhost:9099/-/healthy
	HTTP 200

	14
	DCGM metrics
	curl http://localhost:9400/metrics
	Metrics text

	15
	Milvus collection
	Python: Collection("genomic_evidence").num_entities
	> 0

24.3 Demo Readiness Checklist
	#
	Item
	Check
	Expected

	1
	All services healthy
	Run validate_deployment.sh
	All [OK]

	2
	VCP variant in Milvus
	Query gene="VCP"
	rs188935092 found

	3
	ClinVar annotation
	VCP classification
	Pathogenic

	4
	AlphaMissense score
	VCP am_pathogenicity
	0.87

	5
	PDB structures accessible
	Query RCSB for VCP
	8OOI, 9DIL, 7K56, 5FTK

	6
	MolMIM generates
	Test generation from CB-5083
	Molecules returned

	7
	DiffDock docks
	Test docking against VCP structure
	Scores returned

	8
	Claude responds
	Test RAG query about VCP
	Coherent response

	9
	Grafana dashboards
	Login at port 3000
	Dashboards visible

	10
	GPU metrics flowing
	Check DCGM in Grafana
	GPU util, memory shown

25. Appendix F: Glossary
25.1 Genomics Terms
	Term
	Definition

	FASTQ
	Text-based format for storing nucleotide sequences and quality scores

	BAM
	Binary Alignment Map — compressed format for aligned sequencing reads

	VCF
	Variant Call Format — standard format for genomic variants

	SNP
	Single Nucleotide Polymorphism — single base-pair variant

	Indel
	Insertion or deletion of nucleotides in the genome

	WGS
	Whole Genome Sequencing — sequencing of entire genome

	GRCh38
	Genome Reference Consortium Human Build 38 — current reference genome

	GIAB
	Genome in a Bottle — NIST benchmark samples (e.g., HG002)

	ClinVar
	NCBI database of clinically relevant genomic variants

	VEP
	Variant Effect Predictor — functional annotation tool

	AlphaMissense
	DeepMind model predicting missense variant pathogenicity

	Paired-end
	Sequencing both ends of a DNA fragment for improved alignment

	Coverage (30x)
	Average number of reads covering each position in the genome

25.2 ML/AI Terms
	Term
	Definition

	RAG
	Retrieval-Augmented Generation — combining search with LLM generation

	Embedding
	Dense vector representation of text or data

	BGE
	BAAI General Embedding — sentence transformer model family

	IVF_FLAT
	Inverted File Index — approximate nearest neighbor search method

	COSINE
	Cosine similarity — metric for comparing vector directions

	NIM
	NVIDIA Inference Microservice — containerized model serving

	LLM
	Large Language Model — e.g., Claude

	Vector Database
	Database optimized for similarity search on dense vectors

	nlist
	Number of clusters in IVF index (build-time parameter)

	nprobe
	Number of clusters to search at query time (recall vs. latency)

25.3 Drug Discovery Terms
	Term
	Definition

	SMILES
	Simplified Molecular Input Line Entry System — text notation for molecules

	PDB
	Protein Data Bank — repository of 3D protein structures

	Molecular Docking
	Computational prediction of ligand-protein binding pose and affinity

	QED
	Quantitative Estimate of Drug-likeness — composite drug-likeness score (0-1)

	Lipinski Rule of Five
	Empirical rules predicting oral bioavailability

	TPSA
	Topological Polar Surface Area — predictor of membrane permeability

	LogP
	Partition coefficient — measure of lipophilicity

	HBD / HBA
	Hydrogen Bond Donors / Acceptors

	Conformer
	3D spatial arrangement of a molecule's atoms

	Binding Affinity
	Strength of interaction between a drug molecule and its target protein

	kcal/mol
	Kilocalories per mole — unit for binding energy (more negative = stronger)

	MolMIM
	Molecule generation model from NVIDIA BioNeMo

	DiffDock
	Diffusion-based molecular docking model

	Druggability
	Assessment of whether a protein target can be modulated by a small molecule

	CB-5083
	VCP/p97 inhibitor used as seed molecule in the VCP demo

	RDKit
	Open-source cheminformatics toolkit for molecular analysis

This deployment guide is maintained as part of the HCLS AI Factory open-source project. For updates, issues, and contributions, visit the project repository on GitHub.

HCLS AI Factory — Apache 2.0 | Author: Adam Jones | February 2026

