

Open-Source Project

Project Bible

HCLS AI Factory

Implementation Reference

Complete architecture, pipeline stages, schemas, scoring formulas, and implementation
sequences for building the HCLS AI Factory on NVIDIA DGX Spark — from patient DNA to novel

drug candidates.

NVIDIA DGX Spark | Parabricks | BioNeMo

02/2026 | Version 1.0 | Apache 2.0 License
Author: Adam Jones

Table of Contents

1. Project Overview & Goals

2. DGX Spark Hardware Reference

3. Repository Layout

4. Docker Compose Services

5. Stage 1: Genomics Pipeline

6. Stage 2: RAG/Chat Pipeline

7. Milvus Vector Database Schema

8. Variant Annotation Pipeline

9. Knowledge Base — 201 Genes, 13 Therapeutic Areas

10. Anthropic Claude LLM Integration

11. Stage 3: Drug Discovery Pipeline

12. BioNeMo NIM Services

13. Drug-Likeness Scoring

14. Cryo-EM Structure Evidence

15. VCP/FTD Demo Walkthrough

16. Pydantic Data Models

17. Nextflow DSL2 Orchestration

18. Landing Page & Service Health

19. Monitoring Stack

20. Cross-Modal Integration

21. Configuration Reference

22. Deployment Roadmap

23. Testing Strategy

24. Implementation Sequence

1. Project Overview & Goals

What This Platform Does

The HCLS AI Factory is an end-to-end precision medicine platform that takes a patient’s raw DNA sequencing
data (FASTQ) and produces ranked novel drug candidates — all on a single NVIDIA DGX Spark desktop
workstation. Three GPU-accelerated stages execute sequentially: variant calling, RAG-grounded target
identification, and generative drug discovery.

Three-Stage Pipeline

Stage Function Duration Key Output

1 — Genomics BWA-MEM2 alignment +
DeepVariant calling

120-240 min VCF (~11.7M variants)

2 — RAG/Chat Annotation → Embedding →
LLM reasoning

Interactive Target gene + evidence

3 — Drug Discovery MolMIM → DiffDock →
RDKit scoring

8-16 min 100 ranked drug candidates

End-to-End Flow

Patient DNA → Illumina Sequencer → FASTQ (~200 GB)
 → Parabricks fq2bam → BAM
 → DeepVariant → VCF (11.7M variants)
 → ClinVar + AlphaMissense + VEP annotation
 → Milvus vector indexing (3.5M embeddings)
 → Claude RAG reasoning → Target hypothesis
 → RCSB PDB structure retrieval
 → MolMIM molecule generation
 → DiffDock molecular docking
 → RDKit drug-likeness scoring
 → 100 ranked novel drug candidates + PDF report

Design Principles

GPU-first: Every compute-intensive step runs on the GB10 GPU
Clinically grounded: ClinVar, AlphaMissense, and VEP provide evidence-based annotation

Reproducible: Nextflow DSL2 orchestration with containerized processes

Open: Apache 2.0 license, open-source tools, public reference databases

Desktop-scale: Runs entirely on a $3,999 DGX Spark

2. DGX Spark Hardware Reference

Specifications

Parameter Value

CPU NVIDIA Grace (ARM64 / aarch64), 144 cores

GPU NVIDIA GB10, 1 GPU

Memory 128 GB unified LPDDR5x (CPU + GPU shared)

Storage NVMe, high-throughput I/O

Storage Access GPUDirect Storage (zero-copy GPU access)

Price $3,999

OS Ubuntu-based (NVIDIA DGX OS)

Critical: ARM64 Architecture

ALL containers must be ARM64-compatible. The Grace CPU is aarch64, not x86_64. This affects base Docker
images, Python wheels, NVIDIA container images (NGC ARM64 variants), and any compiled C/C++ extensions.

Unified Memory Model
The 128 GB LPDDR5x is shared between CPU and GPU — there is no separate GPU VRAM. No explicit
CPU→GPU data transfers needed for many operations. Memory pressure from CPU workloads reduces GPU-
available memory. Parabricks fq2bam peaks at ~40 GB, DeepVariant at ~60 GB.

Storage Requirements

Dataset Size Notes

GRCh38 reference 3.1 GB Pre-indexed for BWA-MEM2

FASTQ input (30× WGS) ~200 GB HG002 paired-end

BAM intermediate ~100 GB Temporary, deleted after VCF

ClinVar database ~1.2 GB 4.1M clinical variants

AlphaMissense database ~4 GB 71M predictions

Milvus index ~2 GB 3.5M × 384-dim vectors

BioNeMo model cache ~10 GB MolMIM + DiffDock weights

Total minimum ~320 GB Plus OS and Docker layers

Deployment Progression

Phase Hardware Price Scope

1 — Proof Build DGX Spark $3,999 Single patient, Docker
Compose

2 — Departmental 1–2× DGX B200 $500K–$1M Multiple concurrent
patients, Kubernetes

3 — Enterprise DGX SuperPOD $7M–$60M+ Thousands concurrent,
FLARE federated

3. Repository Layout

hcls-ai-factory-public/
├── README.md # Project overview
├── LICENSE # Apache 2.0
├── docker-compose.yml # All services
├── start-services.sh # Startup orchestration
├── .env.example # Environment template
│
├── hls-orchestrator/ # Nextflow pipeline
│ ├── main.nf # DSL2 entry point
│ ├── nextflow.config # Profiles and parameters
│ ├── run_pipeline.py # Python CLI launcher
│ └── modules/ # genomics/rag_chat/drug_discovery/reporting
│
├── genomics-pipeline/ # Stage 1: Parabricks
│ ├── src/run_parabricks.py # fq2bam + DeepVariant
│ └── src/web_portal.py # Flask portal (:5000)
│
├── rag-chat-pipeline/ # Stage 2: RAG + Claude
│ ├── src/rag_engine.py # Core RAG (23 KB)
│ ├── src/milvus_client.py # Vector DB client (13 KB)
│ ├── src/annotator.py # ClinVar+AM+VEP (23 KB)
│ ├── src/knowledge.py # 201 genes (88 KB)
│ └── src/streamlit_chat.py # Chat UI (:8501)
│
├── drug-discovery-pipeline/ # Stage 3: BioNeMo + RDKit
│ ├── src/pipeline.py # 10-stage orchestration (18 KB)
│ ├── src/nim_clients.py # MolMIM+DiffDock clients (15 KB)
│ ├── src/molecule_generator.py # SMILES generation (11 KB)
│ ├── src/cryoem_evidence.py # Cryo-EM scoring (6 KB)
│ └── src/models.py # Pydantic models (8 KB)
│
├── landing-page/ # Entry point (:8080)
├── monitoring/ # Prometheus + Grafana
└── docs/ # Documentation (122 KB+)

4. Docker Compose Services

Port Allocation

Service Port Protocol Stage

Landing Page 8080 HTTP (Flask) Orchestration

Genomics Portal 5000 HTTP (Flask) Stage 1

RAG REST API 5001 HTTP REST Stage 2

Milvus Vector DB 19530 gRPC Stage 2

Attu (Milvus UI) 8000 HTTP Stage 2

Streamlit Chat 8501 HTTP Stage 2

MolMIM NIM 8001 HTTP REST Stage 3

DiffDock NIM 8002 HTTP REST Stage 3

Discovery UI 8505 HTTP (Streamlit) Stage 3

Discovery Portal 8510 HTTP Stage 3

Grafana 3000 HTTP Monitoring

Prometheus 9099 HTTP Monitoring

Node Exporter 9100 HTTP Monitoring

DCGM Exporter 9400 HTTP Monitoring

Key Container Images

Service Image Notes

Parabricks nvcr.io/nvidia/clara/clara-
parabricks:4.6.0-1

GPU-accelerated genomics

Milvus milvusdb/milvus:v2.4-latest Vector database

MolMIM nvcr.io/nvidia/clara/bionemo-
molmim:1.0

Molecule generation NIM

DiffDock nvcr.io/nvidia/clara/diffdock:1.0 Molecular docking NIM

Grafana grafana/grafana:10.2.2 Dashboards

Prometheus prom/prometheus:v2.48.0 Metrics TSDB

Service Startup Order

The start-services.sh script orchestrates startup in dependency order:

1. Infrastructure (Milvus, monitoring)
2. Stage 1 services (Parabricks, genomics portal)

3. Stage 2 services (RAG engine, Streamlit chat)

4. Stage 3 services (BioNeMo NIMs, discovery UI)

5. Landing page (health monitor for all 10 services)

Health Monitoring

The landing page at port 8080 monitors 10 services:

Service Health Endpoint Interval

Parabricks Port 5000 /health 30s

Milvus Port 19530 gRPC ping 30s

RAG API Port 5001 /health 30s

Chat UI Port 8501 /healthz 30s

MolMIM NIM Port 8001 /v1/health/ready 30s

DiffDock NIM Port 8002 /v1/health/ready 30s

Discovery UI Port 8505 /healthz 30s

Grafana Port 3000 /api/health 30s

Prometheus Port 9099 /-/healthy 30s

DCGM Exporter Port 9400 /metrics 30s

5. Stage 1: Genomics Pipeline

Overview

Stage 1 takes raw FASTQ files from a sequencer and produces a Variant Call Format (VCF) file using NVIDIA
Parabricks — a GPU-accelerated implementation of industry-standard bioinformatics tools.

Input Specifications

Parameter Value

Sample HG002 (GIAB reference standard)

Coverage 30× whole-genome sequencing (WGS)

Read Length 2×250 bp paired-end

File Size ~200 GB (FASTQ pair)

Reference Genome GRCh38 (3.1 GB, pre-indexed)

Format FASTQ (gzip-compressed)

Step 1: BWA-MEM2 Alignment (fq2bam)

bash
pbrun fq2bam \
 --ref /reference/GRCh38.fa \
 --in-fq /data/HG002_R1.fastq.gz /data/HG002_R2.fastq.gz \
 --out-bam /output/HG002.bam \
 --num-gpus 1

Metric Value

Duration 20-45 minutes

GPU Utilization 70-90%

Peak Memory ~40 GB

Output Sorted BAM + BAI index

Algorithm BWA-MEM2 (GPU-accelerated)

Step 2: DeepVariant Variant Calling

bash
pbrun deepvariant \
 --ref /reference/GRCh38.fa \
 --in-bam /output/HG002.bam \
 --out-variants /output/HG002.vcf.gz \
 --num-gpus 1

Metric Value

Duration 10-35 minutes

GPU Utilization 80-95%

Peak Memory ~60 GB

Output VCF (gzip-compressed + tabix index)

Algorithm Google DeepVariant (CNN-based, >99% accuracy)

VCF Output Statistics

Metric Count

Total Variants ~11.7M

High-Quality (QUAL>30) ~3.5M

SNPs ~4.2M

Indels ~1.0M

Coding Region Variants ~35,000

Multi-allelic Sites ~150,000

Parabricks Container

Image: nvcr.io/nvidia/clara/clara-parabricks:4.6.0-1

GPU: Required (CUDA). Volumes: /reference, /data, /output. Port: 5000 (Flask web portal).

6. Stage 2: RAG/Chat Pipeline

Overview

Stage 2 annotates VCF variants with clinical and functional databases, indexes them in a Milvus vector
database, and uses Anthropic Claude with RAG to identify druggable gene targets supported by evidence.

Architecture

VCF (11.7M variants)
 → Quality filter (QUAL>30) → 3.5M variants
 → ClinVar annotation → clinical significance
 → AlphaMissense annotation → pathogenicity prediction
 → VEP annotation → functional consequences
 → BGE-small-en-v1.5 embedding → 384-dim vectors
 → Milvus IVF_FLAT indexing → 3.5M searchable embeddings
 → Claude RAG query → target hypothesis with evidence chain

Annotation Funnel
Stage Variant Count Filter

Raw VCF ~11.7M —

Quality filter ~3.5M QUAL > 30

ClinVar match ~35,616 Clinical significance annotated

AlphaMissense match ~6,831 AI pathogenicity predicted

Coding + pathogenic ~2,400 Actionable subset

Embedding Model
Parameter Value

Model BGE-small-en-v1.5

Dimensions 384

Index Type IVF_FLAT

Index Params nlist=1024

Search Params nprobe=16

Distance Metric COSINE

Total Embeddings ~3.5M

Query Flow

1. User asks a natural language question in the Streamlit chat

2. Query is expanded using 10 therapeutic area keyword maps
3. BGE-small-en-v1.5 embeds the expanded query

4. Milvus performs approximate nearest-neighbor search (top_k=20)

5. Retrieved variant contexts are assembled into a RAG prompt

6. Claude processes the prompt with knowledge base grounding
7. Response includes gene target, evidence chain, and confidence

7. Milvus Vector Database Schema

Collection: genomic_evidence

17 fields capturing genomic position, annotation, and embedding:

Field Type Description

id INT64 (PK, auto) Primary key

embedding FLOAT_VECTOR(384) BGE-small-en-v1.5 embedding

chrom VARCHAR(10) Chromosome (chr1-22, chrX, chrY)

pos INT64 Genomic position

ref VARCHAR(1000) Reference allele

alt VARCHAR(1000) Alternate allele

qual FLOAT Variant quality score

gene VARCHAR(100) Gene symbol

consequence VARCHAR(200) Functional consequence

impact VARCHAR(20) HIGH, MODERATE, LOW, MODIFIER

genotype VARCHAR(10) Sample genotype (0/1, 1/1)

text_summary VARCHAR(2000) Human-readable description

clinical_significance VARCHAR(200) ClinVar classification

rsid VARCHAR(20) dbSNP identifier

disease_associations VARCHAR(2000) Associated diseases

am_pathogenicity FLOAT AlphaMissense score (0-1)

am_class VARCHAR(20) pathogenic/ambiguous/benign

Index Configuration

python
index_params = {
 "index_type": "IVF_FLAT",
 "metric_type": "COSINE",
 "params": {"nlist": 1024}
}

search_params = {
 "metric_type": "COSINE",
 "params": {"nprobe": 16}
}

Milvus Infrastructure

Component Port Purpose

Milvus standalone 19530 gRPC vector operations

Attu UI 8000 Web-based Milvus management

etcd 2379 Metadata storage

MinIO 9000 Object storage for indexes

8. Variant Annotation Pipeline

ClinVar Integration

Parameter Value

Database ClinVar (NCBI)

Total Variants 4.1M clinical variants

Match Rate ~35,616 / 3.5M variants (1.0%)

Classifications Pathogenic, Likely pathogenic, VUS, Likely benign, Benign

Update Frequency Monthly releases

AlphaMissense Integration

Parameter Value

Database AlphaMissense (DeepMind)

Total Predictions 71,697,560 missense variant predictions

Match Rate ~6,831 / 35,616 ClinVar variants (19.2%)

Model AlphaFold-derived protein structure features

Output Pathogenicity score (0.0-1.0)

AlphaMissense Thresholds

Class Score Range Interpretation

Pathogenic > 0.564 Likely disease-causing

Ambiguous 0.34 – 0.564 Uncertain significance

Benign < 0.34 Likely neutral

Ensembl VEP Integration

Parameter Value

Tool Ensembl Variant Effect Predictor (VEP)

Purpose Functional consequence annotation

Impact Levels HIGH, MODERATE, LOW, MODIFIER

Key Consequences missense_variant, stop_gained, frameshift_variant,
splice_donor_variant

Annotation Pipeline Code Pattern

python
def annotate_variants(vcf_path: str) -> List[AnnotatedVariant]:
 """VCF → ClinVar → AlphaMissense → VEP → Annotated variants"""
 variants = parse_vcf(vcf_path, min_qual=30) # ~3.5M pass
 variants = annotate_clinvar(variants) # Clinical significance
 variants = annotate_alphamissense(variants) # AI pathogenicity
 variants = annotate_vep(variants) # Functional consequences
 return variants

9. Knowledge Base — 201 Genes, 13 Therapeutic
Areas

Gene Distribution

Therapeutic Area Count Example Genes

Neurology 36 VCP, APP, PSEN1, MAPT, SOD1, FUS,
C9orf72

Oncology 27 EGFR, BRAF, KRAS, TP53, BRCA1,
BRCA2, PIK3CA

Metabolic 22 GCK, PPARG, SLC2A2, ABCA1, PCSK9

Infectious Disease 21 ACE2, CCR5, IFITM3, TLR4, TMPRSS2

Respiratory 13 CFTR, SERPINA1, MUC5B, TERT

Rare Disease 12 VCP, HTT, SMN1, DMD, CFTR

Hematology 12 HBB, HBA1, F5, JAK2, CALR

GI/Hepatology 12 HFE, ATP7B, NOD2, SERPINA1

Pharmacogenomics 11 CYP2D6, CYP2C19, CYP3A4, DPYD,
TPMT

Ophthalmology 11 RHO, RPE65, RS1, ABCA4

Cardiovascular 10 LDLR, PCSK9, SCN5A, MYBPC3, KCNQ1

Immunology 9 HLA-B, TNF, IL6, JAK1, CTLA4

Dermatology 9 FLG, MC1R, TYR, KRT14

Total: 201 genes, 171 druggable targets (85% druggability rate).

Knowledge Base Entry Structure

python
{
 "gene": "VCP",
 "uniprot": "P55072",
 "therapeutic_area": "Neurology",
 "diseases": ["Frontotemporal Dementia", "ALS", "IBMPFD"],
 "druggability": "High",
 "drug_targets": ["D2 ATPase domain", "N-D1 interface"],
 "known_inhibitors": ["CB-5083", "NMS-873"],
 "variant_hotspots": ["R155H", "R191Q", "A232E"],
 "pathway": "Ubiquitin-proteasome system",
 "mechanism": "AAA+ ATPase, protein homeostasis"
}

Query Expansion Maps

10 therapeutic area query expansion maps enrich user queries with domain-specific terminology for improved
Milvus retrieval.

10. Anthropic Claude LLM Integration

Configuration

Parameter Value

Model claude-sonnet-4-20250514

Temperature 0.3

Max Tokens 4096

API Anthropic Messages API

Role RAG-grounded clinical reasoning

RAG Prompt Structure

python
system_prompt = """You are a clinical genomics specialist
analyzing patient variant data. Ground all responses in
the retrieved variant evidence and knowledge base. Cite
specific variants, genes, and clinical classifications.
When recommending drug targets, explain the evidence
chain from variant to disease mechanism to druggability."""

user_prompt = f"""
Retrieved Variant Evidence (top {top_k} matches)
{formatted_variants}

Knowledge Base Context
{knowledge_context}

User Question
{user_question}
"""

Response Format

Claude generates structured target hypotheses including gene, confidence level, evidence chain, therapeutic
area, diseases, and recommended action for downstream drug discovery.

Note: Claude is only used in this environment for functional testing. A local LLM that aligns with FDA clinical
standards would be used in a clinical setting.

11. Stage 3: Drug Discovery Pipeline

Overview

Stage 3 takes a target gene hypothesis from Stage 2 and produces 100 ranked novel drug candidates using
BioNeMo generative chemistry, molecular docking, and drug-likeness scoring.

10-Stage Pipeline

Stage Process Description

1 Initialize Load target hypothesis, validate inputs

2 Normalize Target Map gene → UniProt ID → PDB
structures

3 Structure Discovery Query RCSB PDB for Cryo-EM/X-ray
structures

4 Structure Preparation Score and rank structures, select best
site

5 Molecule Generation MolMIM generates novel SMILES from

seed

6 Chemistry QC RDKit validates chemical feasibility

7 Conformer Generation RDKit 3D conformer embedding
(ETKDG)

8 Molecular Docking DiffDock predicts binding poses and
affinities

9 Composite Ranking 30% gen + 40% dock + 30% QED
weighted scoring

10 Reporting PDF report generation (ReportLab)

Pipeline Configuration

python
PIPELINE_CONFIG = {
 "num_candidates": 100,
 "molmim_endpoint": "http://localhost:8001/v1/generate",
 "diffdock_endpoint": "http://localhost:8002/v1/dock",
 "min_qed": 0.3,
 "min_dock_score": -6.0, # kcal/mol
 "scoring_weights": {
 "generation": 0.30,
 "docking": 0.40,
 "qed": 0.30
 }
}

UniProt Mappings

Gene UniProt ID Function

VCP P55072 AAA+ ATPase, protein homeostasis

EGFR P00533 Receptor tyrosine kinase

BRAF P15056 Serine/threonine kinase

KRAS P01116 GTPase signaling

12. BioNeMo NIM Services

MolMIM (Port 8001) — Molecule Generation

Parameter Value

Endpoint POST http://localhost:8001/v1/generate

Model MolMIM (Molecular Masked Inverse Model)

Input Seed SMILES string

Output Novel SMILES candidates

Container nvcr.io/nvidia/clara/bionemo-molmim:1.0

MolMIM Request/Response

json
Request
{"smiles": "CC(=O)Nc1ccc(O)cc1",
 "num_molecules": 100,
 "temperature": 0.7, "top_k": 50}

Response
{"molecules": [
 {"smiles": "CC(=O)Nc1ccc(O)c(F)c1", "score": 0.85},
 {"smiles": "CC(=O)Nc1ccc(O)c(Cl)c1", "score": 0.82}
]}

DiffDock (Port 8002) — Molecular Docking

Parameter Value

Endpoint POST http://localhost:8002/v1/dock

Model DiffDock (diffusion-based docking)

Input Ligand SMILES + protein PDB structure

Output Binding pose + affinity score (kcal/mol)

Container nvcr.io/nvidia/clara/diffdock:1.0

Docking Score Interpretation

Score (kcal/mol) Interpretation

-12 to -8 Excellent binding affinity

-8 to -6 Good binding affinity

-6 to -4 Moderate binding affinity

> -4 Weak binding affinity

13. Drug-Likeness Scoring

Lipinski’s Rule of Five

Rule Threshold Description

Molecular Weight ≤ 500 Da Oral absorption limit

LogP ≤ 5 Lipophilicity

H-Bond Donors ≤ 5 NH + OH groups

H-Bond Acceptors ≤ 10 N + O atoms

QED (Quantitative Estimate of Drug-likeness)

Range Interpretation

> 0.67 Drug-like (favorable properties)

0.49 – 0.67 Moderate drug-likeness

< 0.49 Less drug-like

TPSA (Topological Polar Surface Area)

Range (Å²) Interpretation

< 140 Good oral bioavailability

60–90 Optimal range

> 140 Poor oral absorption

Composite Scoring Formula

python
def compute_composite_score(gen_score, dock_score, qed_score):
 """30% generation + 40% docking + 30% QED"""
 dock_normalized = max(0.0, min(1.0, (10.0 + dock_score) / 20.0))
 composite = (
 0.30 * gen_score +
 0.40 * dock_normalized +
 0.30 * qed_score
)
 return composite

RDKit Property Calculation

python
from rdkit import Chem
from rdkit.Chem import Descriptors, QED

def calculate_properties(smiles: str) -> dict:
 mol = Chem.MolFromSmiles(smiles)
 return {
 "molecular_weight": Descriptors.MolWt(mol),
 "logp": Descriptors.MolLogP(mol),
 "hbd": Descriptors.NumHDonors(mol),
 "hba": Descriptors.NumHAcceptors(mol),
 "tpsa": Descriptors.TPSA(mol),
 "qed": QED.qed(mol),
 "lipinski_pass": all([
 Descriptors.MolWt(mol) <= 500,
 Descriptors.MolLogP(mol) <= 5,
 Descriptors.NumHDonors(mol) <= 5,
 Descriptors.NumHAcceptors(mol) <= 10,
])

 }

14. Cryo-EM Structure Evidence

Structure Scoring Algorithm

The pipeline automatically retrieves and scores PDB structures:

python
def score_structure(structure: StructureInfo) -> float:
 """Score PDB structure for drug discovery suitability.
 - Resolution: lower is better (max 5 Å cutoff)
 - Inhibitor-bound: +3 bonus
 - Druggable pockets: +0.5 per pocket
 - Cryo-EM method: +0.5"""
 score += max(0, 5.0 - resolution)
 if has_inhibitor_bound: score += 3.0
 score += num_druggable_pockets * 0.5
 if 'Cryo-EM' in method: score += 0.5
 return score

VCP Structures (Demo)

PDB ID Resolution Method Description

8OOI 2.9 Å Cryo-EM WT VCP hexamer

9DIL 3.2 Å Cryo-EM Mutant VCP

7K56 2.5 Å Cryo-EM VCP complex

5FTK 2.3 Å X-ray VCP + CB-5083 inhibitor

VCP Binding Site

Parameter Value

Domain D2 ATPase domain

Mechanism ATP-competitive inhibition

Pocket Volume ~450 Å³

Druggability Score 0.92

Key Residues ALA464, GLY479, ASP320, GLY215

15. VCP/FTD Demo Walkthrough

Demo Target: Valosin-Containing Protein (VCP/p97)

Parameter Value

Gene VCP

Protein p97 / Valosin-Containing Protein

UniProt P55072

Function AAA+ ATPase, ubiquitin-proteasome pathway

Diseases Frontotemporal Dementia (FTD), ALS, IBMPFD

Variant rs188935092 (chr9:35065263 G>A)

ClinVar Pathogenic

AlphaMissense 0.87 (pathogenic, >0.564 threshold)

Seed Compound CB-5083 (Phase I clinical VCP inhibitor)

Demo Flow

Stage 1 — Genomics (Demo Mode: ~20 min)

1. Load pre-processed HG002 FASTQ subset
2. Run Parabricks fq2bam alignment

3. Run DeepVariant variant calling

4. Output VCF with ~11.7M variants including rs188935092

Stage 2 — RAG/Chat (Interactive)

1. VCF annotated: ClinVar flags rs188935092 as pathogenic in VCP
2. AlphaMissense scores the missense variant at 0.87 (pathogenic)

3. 3.5M variants embedded and indexed in Milvus

4. User queries: "What are the most promising drug targets?"

5. Claude identifies VCP with full evidence chain
6. Target hypothesis: VCP → FTD → druggable D2 ATPase domain

Stage 3 — Drug Discovery (~10 min)

1. VCP → UniProt P55072 → PDB structure retrieval

2. Cryo-EM structures scored: 8OOI, 9DIL, 7K56, 5FTK

3. 5FTK selected (inhibitor-bound, highest score)
4. CB-5083 seed SMILES → MolMIM generates 100 novel analogs

5. RDKit validates Lipinski, QED, TPSA

6. DiffDock docks each candidate against VCP D2 domain

7. Composite ranking: 30% gen + 40% dock + 30% QED

8. Top candidates: novel VCP inhibitors with improved drug-likeness

9. PDF report generated via ReportLab

Expected Demo Output
Pipeline: HCLS AI Factory — VCP/FTD Demo
Target: VCP (P55072) — Frontotemporal Dementia
Seed: CB-5083 (ATP-competitive VCP inhibitor)
Structure: 5FTK (2.3 Å, X-ray, inhibitor-bound)

Results:
- 100 novel VCP inhibitor candidates generated
- 87 pass Lipinski's Rule of Five
- 72 have QED > 0.67 (drug-like)
- Top 10: docking scores -8.2 to -11.4 kcal/mol
- Composite scores range 0.68-0.89

16. Pydantic Data Models

Core Models (from models.py)

All data flows use Pydantic models for validation:

TargetHypothesis

python
class TargetHypothesis(BaseModel):
 """Output from Stage 2 — RAG-identified drug target"""
 gene: str # e.g., 'VCP'
 uniprot_id: str # e.g., 'P55072'
 confidence: str # high, medium, low
 evidence_chain: List[str]
 therapeutic_area: str
 diseases: List[str]
 druggability_score: float # 0-1 scale

RankedCandidate

python
class RankedCandidate(BaseModel):
 """Final ranked drug candidate"""
 rank: int
 smiles: str
 generation_score: float
 dock_score: float # kcal/mol
 qed: float
 composite_score: float # 30% gen + 40% dock + 30% QED
 lipinski_pass: bool
 molecular_weight: float
 logp: float

PipelineConfig

python
class PipelineConfig(BaseModel):

 """Pipeline execution configuration"""
 mode: str # full, target, drug, demo
 num_candidates: int = 100
 min_qed: float = 0.3
 min_dock_score: float = -6.0
 molmim_url: str = "http://localhost:8001/v1/generate"
 diffdock_url: str = "http://localhost:8002/v1/dock"

Additional models: StructureInfo, StructureManifest, MoleculeProperties, GeneratedMolecule, DockingResult,
PipelineRun.

17. Nextflow DSL2 Orchestration

Pipeline Modes

Mode Stages Description

full 1 → 2 → 3 Complete end-to-end pipeline

target 2 → 3 Skip genomics, use existing VCF

drug 3 only Skip to drug discovery with known
target

demo 1 → 2 → 3 Pre-configured VCP/FTD demonstration

genomics_only 1 only Run only variant calling

Main Pipeline Entry (main.nf)

groovy
#!/usr/bin/env nextflow
nextflow.enable.dsl=2

include { GENOMICS_PIPELINE } from './modules/genomics'
include { RAG_CHAT_PIPELINE } from './modules/rag_chat'
include { DRUG_DISCOVERY_PIPELINE } from './modules/drug_discovery'
include { REPORTING } from './modules/reporting'

workflow {
 if (params.mode in ['full', 'demo', 'genomics_only']) {
 GENOMICS_PIPELINE(params.fastq_r1, params.fastq_r2, params.reference)
 }
 if (params.mode in ['full', 'demo', 'target']) {
 RAG_CHAT_PIPELINE(...)
 }
 if (params.mode in ['full', 'demo', 'target', 'drug']) {
 DRUG_DISCOVERY_PIPELINE(...)
 }
 REPORTING(DRUG_DISCOVERY_PIPELINE.out.candidates)
}

Nextflow Profiles

Profile Description

standard Default local execution

docker Docker container execution

singularity Singularity container execution

dgx_spark DGX Spark optimized (GPU resources)

slurm HPC cluster submission

test Minimal test data

Pipeline Launcher (run_pipeline.py)

bash
Full pipeline
python run_pipeline.py --mode full \
 --fastq-r1 /data/HG002_R1.fastq.gz \
 --fastq-r2 /data/HG002_R2.fastq.gz \
 --reference /reference/GRCh38.fa

Demo mode (pre-configured VCP/FTD)
python run_pipeline.py --mode demo

Drug discovery only
python run_pipeline.py --mode drug --target-gene VCP

18. Landing Page & Service Health

Landing Page (Port 8080)

The Flask-based landing page serves as the entry point for the HCLS AI Factory, providing a 10-service health
status dashboard, pipeline mode selector, quick-start links, real-time status with green/red indicators, and
pipeline execution history.

Service Health Check Implementation

python
SERVICES = [
 {"name": "Parabricks Portal", "port": 5000},
 {"name": "Milvus Vector DB", "port": 19530},
 {"name": "RAG API", "port": 5001},
 {"name": "Streamlit Chat", "port": 8501},
 {"name": "MolMIM NIM", "port": 8001},
 {"name": "DiffDock NIM", "port": 8002},
 {"name": "Discovery UI", "port": 8505},
 {"name": "Grafana", "port": 3000},
 {"name": "Prometheus", "port": 9099},
 {"name": "DCGM Exporter", "port": 9400},
]

19. Monitoring Stack

Grafana (Port 3000)

Parameter Value

Image grafana/grafana:10.2.2

Default User admin / changeme

Dashboards HCLS AI Factory (GPU, pipeline, services)

Data Source Prometheus

Prometheus (Port 9099)

Parameter Value

Image prom/prometheus:v2.48.0

Internal Port 9090 → External 9099

Retention 30 days

Targets Node Exporter, DCGM Exporter, service metrics

DCGM Exporter (Port 9400)

Metric Description

DCGM_FI_DEV_GPU_UTIL GPU utilization percentage

DCGM_FI_DEV_FB_USED GPU memory used (bytes)

DCGM_FI_DEV_FB_FREE GPU memory free (bytes)

DCGM_FI_DEV_GPU_TEMP GPU temperature (°C)

DCGM_FI_DEV_POWER_USAGE GPU power draw (watts)

DCGM_FI_DEV_SM_CLOCK SM clock frequency (MHz)

Key Dashboard Panels

1. GPU Utilization Timeline — fq2bam → DeepVariant → MolMIM/DiffDock bursts

2. Pipeline Stage Progress — Stage 1/2/3 completion with timing

3. Memory Pressure — Unified memory usage across CPU + GPU
4. Service Health Grid — Green/red status for all 10 services

5. Variant Processing Rate — Variants annotated per second

6. Drug Discovery Throughput — Molecules generated/docked per minute

20. Cross-Modal Integration

HCLS AI Factory Ecosystem

The genomics-to-drug-discovery pipeline integrates with the broader HCLS AI Factory, including the Imaging
Intelligence Agent:

Cross-Modal Triggers

Trigger Source Target Action

Lung-RADS 4B+ Imaging Agent Genomics Pipeline Initiate tumor profiling

Pathogenic Variant Genomics Pipeline Drug Discovery Generate targeted therapies

Drug Candidates Drug Discovery Imaging Agent Combined clinical report

NVIDIA FLARE — Federated Learning

For multi-site deployments (Phase 3), NVIDIA FLARE enables federated model training. Models train locally at
each site; only model updates (not patient data) are shared. Raw genomic data never leaves the institution.

21. Configuration Reference

Environment Variables

Variable Default Description

ANTHROPIC_API_KEY (required) Anthropic API key for Claude

NGC_API_KEY (required) NVIDIA NGC key for BioNeMo NIMs

REFERENCE_GENOME /reference/GRCh38.fa Path to GRCh38 reference

MILVUS_HOST localhost Milvus server hostname

MILVUS_PORT 19530 Milvus gRPC port

MOLMIM_URL http://localhost:8001 MolMIM NIM endpoint

DIFFDOCK_URL http://localhost:8002 DiffDock NIM endpoint

CLAUDE_MODEL claude-sonnet-4-20250514 Claude model identifier

CLAUDE_TEMPERATURE 0.3 LLM temperature

PIPELINE_MODE full Pipeline execution mode

NUM_CANDIDATES 100 Drug candidates to generate

MIN_QED 0.3 Minimum QED threshold

MIN_DOCK_SCORE -6.0 Minimum docking score (kcal/mol)

AlphaMissense Thresholds

python
AM_PATHOGENIC_THRESHOLD = 0.564
AM_AMBIGUOUS_LOWER = 0.34
AM_AMBIGUOUS_UPPER = 0.564
AM_BENIGN_THRESHOLD = 0.34

Scoring Weights

python
SCORING_WEIGHTS = {
 "generation": 0.30, # MolMIM generation confidence
 "docking": 0.40, # DiffDock binding affinity
 "qed": 0.30 # RDKit drug-likeness
}

Drug-Likeness Thresholds

python
LIPINSKI = {"max_mw": 500, "max_logp": 5, "max_hbd": 5, "max_hba": 10}
QED = {"drug_like": 0.67, "moderate": 0.49}
DOCKING = {"excellent": -8.0, "good": -6.0, "moderate": -4.0, "minimum": -6.0}

22. Deployment Roadmap

Phase 1: Proof Build

Parameter Value

Hardware NVIDIA DGX Spark ($3,999)

Orchestration Docker Compose

Scale Single patient, sequential processing

GPU 1× GB10

Memory 128 GB unified

Phase 2: Departmental
Parameter Value

Hardware 1–2× DGX B200

Orchestration Kubernetes

Scale Multiple concurrent patients

GPU 8× B200 per node

Memory 1–2 TB HBM3e

Phase 3: Enterprise / Multi-Site

Parameter Value

Hardware DGX SuperPOD

Orchestration Kubernetes + NVIDIA FLARE

Scale Thousands of concurrent patients

GPU Hundreds of B200 GPUs

Privacy Federated learning (data stays local)

Scaling Considerations

Bottleneck Phase 1 Solution Phase 2+ Solution

Genomics throughput Sequential (1 sample) Parallel Parabricks instances

Milvus query latency Single-node Milvus Cluster with sharding

BioNeMo inference Single NIM per model Multiple NIM replicas

Storage I/O NVMe direct GPUDirect Storage + RAID

23. Testing Strategy

Unit Tests

Component Test Focus

VCF Parser Variant extraction, quality filtering

Annotator ClinVar/AlphaMissense/VEP lookup accuracy

Milvus Client Index creation, search recall

MolMIM Client SMILES generation, request format

DiffDock Client Docking request/response parsing

RDKit Scoring Lipinski, QED, TPSA calculations

Composite Scorer Weight application, normalization

Integration Tests

Test Validates

VCF → Annotation → Milvus End-to-end Stage 2 pipeline

Target → PDB → MolMIM → DiffDock End-to-end Stage 3 pipeline

Health check endpoints All 10 services responding

Nextflow modes full, target, drug, demo execution

Demo Mode Validation

The demo pipeline mode uses pre-configured inputs to validate the complete pipeline. Input: HG002 FASTQ
subset. Expected: VCP identified as target with rs188935092 evidence. Output: 100 ranked novel VCP inhibitor
candidates.

24. Implementation Sequence

Recommended Build Order

1. Infrastructure: Docker Compose, Milvus, monitoring stack

2. Stage 1 — Genomics: Parabricks container, fq2bam, DeepVariant, VCF output
3. Stage 2 — Annotation: ClinVar + AlphaMissense + VEP pipeline

4. Stage 2 — Vector DB: Milvus schema, BGE embedding, IVF_FLAT index

5. Stage 2 — RAG: Claude integration, knowledge base, query expansion

6. Stage 2 — Chat UI: Streamlit interface, REST API
7. Stage 3 — Structure: RCSB PDB retrieval, Cryo-EM scoring

8. Stage 3 — Generation: MolMIM NIM, molecule generation

9. Stage 3 — Docking: DiffDock NIM, binding prediction

10. Stage 3 — Scoring: RDKit properties, composite ranking
11. Stage 3 — Reporting: PDF generation, Discovery UI

12. Orchestration: Nextflow DSL2, pipeline modes, landing page

13. Testing: Unit tests, integration tests, demo mode validation

14. Monitoring: Grafana dashboards, alerting rules

Key Dependencies
GRCh38 reference → BWA-MEM2 index → fq2bam alignment
ClinVar + AlphaMissense databases → Annotation pipeline
Milvus running → Embedding indexing → RAG queries
BioNeMo NIMs running → Molecule generation + docking

All services healthy → Landing page green status

This Project Bible is the authoritative technical reference for the HCLS AI Factory. All other documentation assets
derive their technical details from this source.

