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1. Project Overview & Goals 

What This Platform Does 

The HCLS AI Factory is an end-to-end precision medicine platform that takes a patient’s raw DNA sequencing 
data (FASTQ) and produces ranked novel drug candidates — all on a single NVIDIA DGX Spark desktop 
workstation. Three GPU-accelerated stages execute sequentially: variant calling, RAG-grounded target 
identification, and generative drug discovery. 

Three-Stage Pipeline 

Stage Function Duration Key Output 

1 — Genomics BWA-MEM2 alignment + 
DeepVariant calling 

120-240 min VCF (~11.7M variants) 

2 — RAG/Chat Annotation → Embedding → 
LLM reasoning 

Interactive Target gene + evidence 

3 — Drug Discovery MolMIM → DiffDock → 
RDKit scoring 

8-16 min 100 ranked drug candidates 

 

End-to-End Flow 

Patient DNA → Illumina Sequencer → FASTQ (~200 GB) 
  → Parabricks fq2bam → BAM 
  → DeepVariant → VCF (11.7M variants) 
  → ClinVar + AlphaMissense + VEP annotation 
  → Milvus vector indexing (3.5M embeddings) 
  → Claude RAG reasoning → Target hypothesis 
  → RCSB PDB structure retrieval 
  → MolMIM molecule generation 
  → DiffDock molecular docking 
  → RDKit drug-likeness scoring 
  → 100 ranked novel drug candidates + PDF report 

 

Design Principles 

GPU-first:  Every compute-intensive step runs on the GB10 GPU 
Clinically grounded:  ClinVar, AlphaMissense, and VEP provide evidence-based annotation 

Reproducible:  Nextflow DSL2 orchestration with containerized processes 

Open:  Apache 2.0 license, open-source tools, public reference databases 

Desktop-scale:  Runs entirely on a $3,999 DGX Spark 
  



2. DGX Spark Hardware Reference 

Specifications 

Parameter Value 

CPU NVIDIA Grace (ARM64 / aarch64), 144 cores 

GPU NVIDIA GB10, 1 GPU 

Memory 128 GB unified LPDDR5x (CPU + GPU shared) 

Storage NVMe, high-throughput I/O 

Storage Access GPUDirect Storage (zero-copy GPU access) 

Price $3,999 

OS Ubuntu-based (NVIDIA DGX OS) 

 

Critical: ARM64 Architecture 

ALL containers must be ARM64-compatible. The Grace CPU is aarch64, not x86_64. This affects base Docker 
images, Python wheels, NVIDIA container images (NGC ARM64 variants), and any compiled C/C++ extensions. 

Unified Memory Model 
The 128 GB LPDDR5x is shared between CPU and GPU — there is no separate GPU VRAM. No explicit 
CPU→GPU data transfers needed for many operations. Memory pressure from CPU workloads reduces GPU-
available memory. Parabricks fq2bam peaks at ~40 GB, DeepVariant at ~60 GB. 

Storage Requirements 

Dataset Size Notes 

GRCh38 reference 3.1 GB Pre-indexed for BWA-MEM2 

FASTQ input (30× WGS) ~200 GB HG002 paired-end 

BAM intermediate ~100 GB Temporary, deleted after VCF 

ClinVar database ~1.2 GB 4.1M clinical variants 

AlphaMissense database ~4 GB 71M predictions 

Milvus index ~2 GB 3.5M × 384-dim vectors 

BioNeMo model cache ~10 GB MolMIM + DiffDock weights 

Total minimum ~320 GB Plus OS and Docker layers 
 

 



Deployment Progression 

Phase Hardware Price Scope 

1 — Proof Build DGX Spark $3,999 Single patient, Docker 
Compose 

2 — Departmental 1–2× DGX B200 $500K–$1M Multiple concurrent 
patients, Kubernetes 

3 — Enterprise DGX SuperPOD $7M–$60M+ Thousands concurrent, 
FLARE federated 

 

 

3. Repository Layout 

hcls-ai-factory-public/ 
├── README.md                           # Project overview 
├── LICENSE                             # Apache 2.0 
├── docker-compose.yml                  # All services 
├── start-services.sh                   # Startup orchestration 
├── .env.example                        # Environment template 
│ 
├── hls-orchestrator/                   # Nextflow pipeline 
│   ├── main.nf                         # DSL2 entry point 
│   ├── nextflow.config                 # Profiles and parameters 
│   ├── run_pipeline.py                 # Python CLI launcher 
│   └── modules/                        # genomics/rag_chat/drug_discovery/reporting 
│ 
├── genomics-pipeline/                  # Stage 1: Parabricks 
│   ├── src/run_parabricks.py           # fq2bam + DeepVariant 
│   └── src/web_portal.py               # Flask portal (:5000) 
│ 
├── rag-chat-pipeline/                  # Stage 2: RAG + Claude 
│   ├── src/rag_engine.py               # Core RAG (23 KB) 
│   ├── src/milvus_client.py            # Vector DB client (13 KB) 
│   ├── src/annotator.py                # ClinVar+AM+VEP (23 KB) 
│   ├── src/knowledge.py                # 201 genes (88 KB) 
│   └── src/streamlit_chat.py           # Chat UI (:8501) 
│ 
├── drug-discovery-pipeline/            # Stage 3: BioNeMo + RDKit 
│   ├── src/pipeline.py                 # 10-stage orchestration (18 KB) 
│   ├── src/nim_clients.py              # MolMIM+DiffDock clients (15 KB) 
│   ├── src/molecule_generator.py       # SMILES generation (11 KB) 
│   ├── src/cryoem_evidence.py          # Cryo-EM scoring (6 KB) 
│   └── src/models.py                   # Pydantic models (8 KB) 
│ 
├── landing-page/                       # Entry point (:8080) 
├── monitoring/                         # Prometheus + Grafana 
└── docs/                               # Documentation (122 KB+) 

  



4. Docker Compose Services 

Port Allocation 

Service Port Protocol Stage 

Landing Page 8080 HTTP (Flask) Orchestration 

Genomics Portal 5000 HTTP (Flask) Stage 1 

RAG REST API 5001 HTTP REST Stage 2 

Milvus Vector DB 19530 gRPC Stage 2 

Attu (Milvus UI) 8000 HTTP Stage 2 

Streamlit Chat 8501 HTTP Stage 2 

MolMIM NIM 8001 HTTP REST Stage 3 

DiffDock NIM 8002 HTTP REST Stage 3 

Discovery UI 8505 HTTP (Streamlit) Stage 3 

Discovery Portal 8510 HTTP Stage 3 

Grafana 3000 HTTP Monitoring 

Prometheus 9099 HTTP Monitoring 

Node Exporter 9100 HTTP Monitoring 

DCGM Exporter 9400 HTTP Monitoring 
 

Key Container Images 

Service Image Notes 

Parabricks nvcr.io/nvidia/clara/clara-
parabricks:4.6.0-1 

GPU-accelerated genomics 

Milvus milvusdb/milvus:v2.4-latest Vector database 

MolMIM nvcr.io/nvidia/clara/bionemo-
molmim:1.0 

Molecule generation NIM 

DiffDock nvcr.io/nvidia/clara/diffdock:1.0 Molecular docking NIM 

Grafana grafana/grafana:10.2.2 Dashboards 

Prometheus prom/prometheus:v2.48.0 Metrics TSDB 

 

Service Startup Order 

The start-services.sh script orchestrates startup in dependency order: 

1.  Infrastructure (Milvus, monitoring) 
2.  Stage 1 services (Parabricks, genomics portal) 

3.  Stage 2 services (RAG engine, Streamlit chat) 



4.  Stage 3 services (BioNeMo NIMs, discovery UI) 

5.  Landing page (health monitor for all 10 services) 

Health Monitoring 

The landing page at port 8080 monitors 10 services: 

Service Health Endpoint Interval 

Parabricks Port 5000 /health 30s 

Milvus Port 19530 gRPC ping 30s 

RAG API Port 5001 /health 30s 

Chat UI Port 8501 /healthz 30s 

MolMIM NIM Port 8001 /v1/health/ready 30s 

DiffDock NIM Port 8002 /v1/health/ready 30s 

Discovery UI Port 8505 /healthz 30s 

Grafana Port 3000 /api/health 30s 

Prometheus Port 9099 /-/healthy 30s 

DCGM Exporter Port 9400 /metrics 30s 

 

 

5. Stage 1: Genomics Pipeline 

Overview 

Stage 1 takes raw FASTQ files from a sequencer and produces a Variant Call Format (VCF) file using NVIDIA 
Parabricks — a GPU-accelerated implementation of industry-standard bioinformatics tools. 

Input Specifications 

Parameter Value 

Sample HG002 (GIAB reference standard) 

Coverage 30× whole-genome sequencing (WGS) 

Read Length 2×250 bp paired-end 

File Size ~200 GB (FASTQ pair) 

Reference Genome GRCh38 (3.1 GB, pre-indexed) 

Format FASTQ (gzip-compressed) 

 

 

 



Step 1: BWA-MEM2 Alignment (fq2bam) 

bash 
pbrun fq2bam \ 
  --ref /reference/GRCh38.fa \ 
  --in-fq /data/HG002_R1.fastq.gz /data/HG002_R2.fastq.gz \ 
  --out-bam /output/HG002.bam \ 
  --num-gpus 1 

 

Metric Value 

Duration 20-45 minutes 

GPU Utilization 70-90% 

Peak Memory ~40 GB 

Output Sorted BAM + BAI index 

Algorithm BWA-MEM2 (GPU-accelerated) 
 

Step 2: DeepVariant Variant Calling 

bash 
pbrun deepvariant \ 
  --ref /reference/GRCh38.fa \ 
  --in-bam /output/HG002.bam \ 
  --out-variants /output/HG002.vcf.gz \ 
  --num-gpus 1 

 

Metric Value 

Duration 10-35 minutes 

GPU Utilization 80-95% 

Peak Memory ~60 GB 

Output VCF (gzip-compressed + tabix index) 

Algorithm Google DeepVariant (CNN-based, >99% accuracy) 

 

VCF Output Statistics 

Metric Count 

Total Variants ~11.7M 

High-Quality (QUAL>30) ~3.5M 

SNPs ~4.2M 

Indels ~1.0M 

Coding Region Variants ~35,000 

Multi-allelic Sites ~150,000 

 



Parabricks Container 

Image: nvcr.io/nvidia/clara/clara-parabricks:4.6.0-1 

GPU: Required (CUDA). Volumes: /reference, /data, /output. Port: 5000 (Flask web portal). 

 

 

6. Stage 2: RAG/Chat Pipeline 

Overview 

Stage 2 annotates VCF variants with clinical and functional databases, indexes them in a Milvus vector 
database, and uses Anthropic Claude with RAG to identify druggable gene targets supported by evidence. 

Architecture 

VCF (11.7M variants) 
  → Quality filter (QUAL>30) → 3.5M variants 
  → ClinVar annotation → clinical significance 
  → AlphaMissense annotation → pathogenicity prediction 
  → VEP annotation → functional consequences 
  → BGE-small-en-v1.5 embedding → 384-dim vectors 
  → Milvus IVF_FLAT indexing → 3.5M searchable embeddings 
  → Claude RAG query → target hypothesis with evidence chain 

 

Annotation Funnel 
Stage Variant Count Filter 

Raw VCF ~11.7M — 

Quality filter ~3.5M QUAL > 30 

ClinVar match ~35,616 Clinical significance annotated 

AlphaMissense match ~6,831 AI pathogenicity predicted 

Coding + pathogenic ~2,400 Actionable subset 
 

Embedding Model 
Parameter Value 

Model BGE-small-en-v1.5 

Dimensions 384 

Index Type IVF_FLAT 

Index Params nlist=1024 

Search Params nprobe=16 



Distance Metric COSINE 

Total Embeddings ~3.5M 
 

Query Flow 

1.  User asks a natural language question in the Streamlit chat 

2.  Query is expanded using 10 therapeutic area keyword maps 
3.  BGE-small-en-v1.5 embeds the expanded query 

4.  Milvus performs approximate nearest-neighbor search (top_k=20) 

5.  Retrieved variant contexts are assembled into a RAG prompt 

6.  Claude processes the prompt with knowledge base grounding 
7.  Response includes gene target, evidence chain, and confidence 

 

 

7. Milvus Vector Database Schema 

Collection: genomic_evidence 

17 fields capturing genomic position, annotation, and embedding: 

Field Type Description 

id INT64 (PK, auto) Primary key 

embedding FLOAT_VECTOR(384) BGE-small-en-v1.5 embedding 

chrom VARCHAR(10) Chromosome (chr1-22, chrX, chrY) 

pos INT64 Genomic position 

ref VARCHAR(1000) Reference allele 

alt VARCHAR(1000) Alternate allele 

qual FLOAT Variant quality score 

gene VARCHAR(100) Gene symbol 

consequence VARCHAR(200) Functional consequence 

impact VARCHAR(20) HIGH, MODERATE, LOW, MODIFIER 

genotype VARCHAR(10) Sample genotype (0/1, 1/1) 

text_summary VARCHAR(2000) Human-readable description 

clinical_significance VARCHAR(200) ClinVar classification 

rsid VARCHAR(20) dbSNP identifier 

disease_associations VARCHAR(2000) Associated diseases 

am_pathogenicity FLOAT AlphaMissense score (0-1) 

am_class VARCHAR(20) pathogenic/ambiguous/benign 

 



Index Configuration 

python 
index_params = { 
    "index_type": "IVF_FLAT", 
    "metric_type": "COSINE", 
    "params": {"nlist": 1024} 
} 
  
search_params = { 
    "metric_type": "COSINE", 
    "params": {"nprobe": 16} 
} 

 

Milvus Infrastructure 

Component Port Purpose 

Milvus standalone 19530 gRPC vector operations 

Attu UI 8000 Web-based Milvus management 

etcd 2379 Metadata storage 

MinIO 9000 Object storage for indexes 
 

 

8. Variant Annotation Pipeline 

ClinVar Integration 

Parameter Value 

Database ClinVar (NCBI) 

Total Variants 4.1M clinical variants 

Match Rate ~35,616 / 3.5M variants (1.0%) 

Classifications Pathogenic, Likely pathogenic, VUS, Likely benign, Benign 

Update Frequency Monthly releases 
 

AlphaMissense Integration 

Parameter Value 

Database AlphaMissense (DeepMind) 

Total Predictions 71,697,560 missense variant predictions 

Match Rate ~6,831 / 35,616 ClinVar variants (19.2%) 

Model AlphaFold-derived protein structure features 

Output Pathogenicity score (0.0-1.0) 



AlphaMissense Thresholds 

Class Score Range Interpretation 

Pathogenic > 0.564 Likely disease-causing 

Ambiguous 0.34 – 0.564 Uncertain significance 

Benign < 0.34 Likely neutral 
 

Ensembl VEP Integration 

Parameter Value 

Tool Ensembl Variant Effect Predictor (VEP) 

Purpose Functional consequence annotation 

Impact Levels HIGH, MODERATE, LOW, MODIFIER 

Key Consequences missense_variant, stop_gained, frameshift_variant, 
splice_donor_variant 

 

Annotation Pipeline Code Pattern 

python 
def annotate_variants(vcf_path: str) -> List[AnnotatedVariant]: 
    """VCF → ClinVar → AlphaMissense → VEP → Annotated variants""" 
    variants = parse_vcf(vcf_path, min_qual=30)        # ~3.5M pass 
    variants = annotate_clinvar(variants)                # Clinical significance 
    variants = annotate_alphamissense(variants)          # AI pathogenicity 
    variants = annotate_vep(variants)                    # Functional consequences 
    return variants 

 

 

9. Knowledge Base — 201 Genes, 13 Therapeutic 
Areas 

Gene Distribution 

Therapeutic Area Count Example Genes 

Neurology 36 VCP, APP, PSEN1, MAPT, SOD1, FUS, 
C9orf72 

Oncology 27 EGFR, BRAF, KRAS, TP53, BRCA1, 
BRCA2, PIK3CA 

Metabolic 22 GCK, PPARG, SLC2A2, ABCA1, PCSK9 

Infectious Disease 21 ACE2, CCR5, IFITM3, TLR4, TMPRSS2 

Respiratory 13 CFTR, SERPINA1, MUC5B, TERT 



Rare Disease 12 VCP, HTT, SMN1, DMD, CFTR 

Hematology 12 HBB, HBA1, F5, JAK2, CALR 

GI/Hepatology 12 HFE, ATP7B, NOD2, SERPINA1 

Pharmacogenomics 11 CYP2D6, CYP2C19, CYP3A4, DPYD, 
TPMT 

Ophthalmology 11 RHO, RPE65, RS1, ABCA4 

Cardiovascular 10 LDLR, PCSK9, SCN5A, MYBPC3, KCNQ1 

Immunology 9 HLA-B, TNF, IL6, JAK1, CTLA4 

Dermatology 9 FLG, MC1R, TYR, KRT14 
 

Total: 201 genes, 171 druggable targets (85% druggability rate). 

Knowledge Base Entry Structure 

python 
{ 
    "gene": "VCP", 
    "uniprot": "P55072", 
    "therapeutic_area": "Neurology", 
    "diseases": ["Frontotemporal Dementia", "ALS", "IBMPFD"], 
    "druggability": "High", 
    "drug_targets": ["D2 ATPase domain", "N-D1 interface"], 
    "known_inhibitors": ["CB-5083", "NMS-873"], 
    "variant_hotspots": ["R155H", "R191Q", "A232E"], 
    "pathway": "Ubiquitin-proteasome system", 
    "mechanism": "AAA+ ATPase, protein homeostasis" 
} 

 

Query Expansion Maps 

10 therapeutic area query expansion maps enrich user queries with domain-specific terminology for improved 
Milvus retrieval. 

 

 

10. Anthropic Claude LLM Integration 

Configuration 

Parameter Value 

Model claude-sonnet-4-20250514 

Temperature 0.3 

Max Tokens 4096 

API Anthropic Messages API 

Role RAG-grounded clinical reasoning 



RAG Prompt Structure 

python 
system_prompt = """You are a clinical genomics specialist 
analyzing patient variant data. Ground all responses in 
the retrieved variant evidence and knowledge base. Cite 
specific variants, genes, and clinical classifications. 
When recommending drug targets, explain the evidence 
chain from variant to disease mechanism to druggability.""" 
  
user_prompt = f""" 
## Retrieved Variant Evidence (top {top_k} matches) 
{formatted_variants} 
  
## Knowledge Base Context 
{knowledge_context} 
  
## User Question 
{user_question} 
""" 

 

Response Format 

Claude generates structured target hypotheses including gene, confidence level, evidence chain, therapeutic 
area, diseases, and recommended action for downstream drug discovery. 

Note: Claude is only used in this environment for functional testing. A local LLM that aligns with FDA clinical 
standards would be used in a clinical setting. 

 

 

11. Stage 3: Drug Discovery Pipeline 

Overview 

Stage 3 takes a target gene hypothesis from Stage 2 and produces 100 ranked novel drug candidates using 
BioNeMo generative chemistry, molecular docking, and drug-likeness scoring. 

10-Stage Pipeline 

Stage Process Description 

1 Initialize Load target hypothesis, validate inputs 

2 Normalize Target Map gene → UniProt ID → PDB 
structures 

3 Structure Discovery Query RCSB PDB for Cryo-EM/X-ray 
structures 

4 Structure Preparation Score and rank structures, select best 
site 

5 Molecule Generation MolMIM generates novel SMILES from 



seed 

6 Chemistry QC RDKit validates chemical feasibility 

7 Conformer Generation RDKit 3D conformer embedding 
(ETKDG) 

8 Molecular Docking DiffDock predicts binding poses and 
affinities 

9 Composite Ranking 30% gen + 40% dock + 30% QED 
weighted scoring 

10 Reporting PDF report generation (ReportLab) 
 

Pipeline Configuration 

python 
PIPELINE_CONFIG = { 
    "num_candidates": 100, 
    "molmim_endpoint": "http://localhost:8001/v1/generate", 
    "diffdock_endpoint": "http://localhost:8002/v1/dock", 
    "min_qed": 0.3, 
    "min_dock_score": -6.0,         # kcal/mol 
    "scoring_weights": { 
        "generation": 0.30, 
        "docking": 0.40, 
        "qed": 0.30 
    } 
} 

 

UniProt Mappings 

Gene UniProt ID Function 

VCP P55072 AAA+ ATPase, protein homeostasis 

EGFR P00533 Receptor tyrosine kinase 

BRAF P15056 Serine/threonine kinase 

KRAS P01116 GTPase signaling 
 

 

12. BioNeMo NIM Services 

MolMIM (Port 8001) — Molecule Generation 

Parameter Value 

Endpoint POST http://localhost:8001/v1/generate 

Model MolMIM (Molecular Masked Inverse Model) 

Input Seed SMILES string 

Output Novel SMILES candidates 



Container nvcr.io/nvidia/clara/bionemo-molmim:1.0 

 

MolMIM Request/Response 

json 
# Request 
{"smiles": "CC(=O)Nc1ccc(O)cc1", 
 "num_molecules": 100, 
 "temperature": 0.7, "top_k": 50} 
  
# Response 
{"molecules": [ 
  {"smiles": "CC(=O)Nc1ccc(O)c(F)c1", "score": 0.85}, 
  {"smiles": "CC(=O)Nc1ccc(O)c(Cl)c1", "score": 0.82} 
]} 

 

DiffDock (Port 8002) — Molecular Docking 

Parameter Value 

Endpoint POST http://localhost:8002/v1/dock 

Model DiffDock (diffusion-based docking) 

Input Ligand SMILES + protein PDB structure 

Output Binding pose + affinity score (kcal/mol) 

Container nvcr.io/nvidia/clara/diffdock:1.0 

 

Docking Score Interpretation 

Score (kcal/mol) Interpretation 

-12 to -8 Excellent binding affinity 

-8 to -6 Good binding affinity 

-6 to -4 Moderate binding affinity 

> -4 Weak binding affinity 

 

 

13. Drug-Likeness Scoring 

Lipinski’s Rule of Five 

Rule Threshold Description 

Molecular Weight ≤ 500 Da Oral absorption limit 

LogP ≤ 5 Lipophilicity 

H-Bond Donors ≤ 5 NH + OH groups 



H-Bond Acceptors ≤ 10 N + O atoms 

 

QED (Quantitative Estimate of Drug-likeness) 

Range Interpretation 

> 0.67 Drug-like (favorable properties) 

0.49 – 0.67 Moderate drug-likeness 

< 0.49 Less drug-like 
 

TPSA (Topological Polar Surface Area) 

Range (Å²) Interpretation 

< 140 Good oral bioavailability 

60–90 Optimal range 

> 140 Poor oral absorption 
 

Composite Scoring Formula 

python 
def compute_composite_score(gen_score, dock_score, qed_score): 
    """30% generation + 40% docking + 30% QED""" 
    dock_normalized = max(0.0, min(1.0, (10.0 + dock_score) / 20.0)) 
    composite = ( 
        0.30 * gen_score + 
        0.40 * dock_normalized + 
        0.30 * qed_score 
    ) 
    return composite 

 

RDKit Property Calculation 

python 
from rdkit import Chem 
from rdkit.Chem import Descriptors, QED 
  
def calculate_properties(smiles: str) -> dict: 
    mol = Chem.MolFromSmiles(smiles) 
    return { 
        "molecular_weight": Descriptors.MolWt(mol), 
        "logp": Descriptors.MolLogP(mol), 
        "hbd": Descriptors.NumHDonors(mol), 
        "hba": Descriptors.NumHAcceptors(mol), 
        "tpsa": Descriptors.TPSA(mol), 
        "qed": QED.qed(mol), 
        "lipinski_pass": all([ 
            Descriptors.MolWt(mol) <= 500, 
            Descriptors.MolLogP(mol) <= 5, 
            Descriptors.NumHDonors(mol) <= 5, 
            Descriptors.NumHAcceptors(mol) <= 10, 
        ]) 



    } 
 

 

14. Cryo-EM Structure Evidence 

Structure Scoring Algorithm 

The pipeline automatically retrieves and scores PDB structures: 

python 
def score_structure(structure: StructureInfo) -> float: 
    """Score PDB structure for drug discovery suitability. 
    - Resolution: lower is better (max 5 Å cutoff) 
    - Inhibitor-bound: +3 bonus 
    - Druggable pockets: +0.5 per pocket 
    - Cryo-EM method: +0.5""" 
    score += max(0, 5.0 - resolution) 
    if has_inhibitor_bound: score += 3.0 
    score += num_druggable_pockets * 0.5 
    if 'Cryo-EM' in method: score += 0.5 
    return score 

 

VCP Structures (Demo) 

PDB ID Resolution Method Description 

8OOI 2.9 Å Cryo-EM WT VCP hexamer 

9DIL 3.2 Å Cryo-EM Mutant VCP 

7K56 2.5 Å Cryo-EM VCP complex 

5FTK 2.3 Å X-ray VCP + CB-5083 inhibitor 

 

VCP Binding Site 

Parameter Value 

Domain D2 ATPase domain 

Mechanism ATP-competitive inhibition 

Pocket Volume ~450 Å³ 

Druggability Score 0.92 

Key Residues ALA464, GLY479, ASP320, GLY215 
  



15. VCP/FTD Demo Walkthrough 

Demo Target: Valosin-Containing Protein (VCP/p97) 

Parameter Value 

Gene VCP 

Protein p97 / Valosin-Containing Protein 

UniProt P55072 

Function AAA+ ATPase, ubiquitin-proteasome pathway 

Diseases Frontotemporal Dementia (FTD), ALS, IBMPFD 

Variant rs188935092 (chr9:35065263 G>A) 

ClinVar Pathogenic 

AlphaMissense 0.87 (pathogenic, >0.564 threshold) 

Seed Compound CB-5083 (Phase I clinical VCP inhibitor) 

 

Demo Flow 

Stage 1 — Genomics (Demo Mode: ~20 min) 

1.  Load pre-processed HG002 FASTQ subset 
2.  Run Parabricks fq2bam alignment 

3.  Run DeepVariant variant calling 

4.  Output VCF with ~11.7M variants including rs188935092 

Stage 2 — RAG/Chat (Interactive) 

1.  VCF annotated: ClinVar flags rs188935092 as pathogenic in VCP 
2.  AlphaMissense scores the missense variant at 0.87 (pathogenic) 

3.  3.5M variants embedded and indexed in Milvus 

4.  User queries: "What are the most promising drug targets?" 

5.  Claude identifies VCP with full evidence chain 
6.  Target hypothesis: VCP → FTD → druggable D2 ATPase domain 

Stage 3 — Drug Discovery (~10 min) 

1.  VCP → UniProt P55072 → PDB structure retrieval 

2.  Cryo-EM structures scored: 8OOI, 9DIL, 7K56, 5FTK 

3.  5FTK selected (inhibitor-bound, highest score) 
4.  CB-5083 seed SMILES → MolMIM generates 100 novel analogs 

5.  RDKit validates Lipinski, QED, TPSA 

6.  DiffDock docks each candidate against VCP D2 domain 

7.  Composite ranking: 30% gen + 40% dock + 30% QED 



8.  Top candidates: novel VCP inhibitors with improved drug-likeness 

9.  PDF report generated via ReportLab 

Expected Demo Output 
Pipeline: HCLS AI Factory — VCP/FTD Demo 
Target: VCP (P55072) — Frontotemporal Dementia 
Seed: CB-5083 (ATP-competitive VCP inhibitor) 
Structure: 5FTK (2.3 Å, X-ray, inhibitor-bound) 
  
Results: 
- 100 novel VCP inhibitor candidates generated 
- 87 pass Lipinski's Rule of Five 
- 72 have QED > 0.67 (drug-like) 
- Top 10: docking scores -8.2 to -11.4 kcal/mol 
- Composite scores range 0.68-0.89 

 

 

16. Pydantic Data Models 

Core Models (from models.py) 

All data flows use Pydantic models for validation: 

TargetHypothesis 

python 
class TargetHypothesis(BaseModel): 
    """Output from Stage 2 — RAG-identified drug target""" 
    gene: str                     # e.g., 'VCP' 
    uniprot_id: str               # e.g., 'P55072' 
    confidence: str               # high, medium, low 
    evidence_chain: List[str] 
    therapeutic_area: str 
    diseases: List[str] 
    druggability_score: float     # 0-1 scale 

 

RankedCandidate 

python 
class RankedCandidate(BaseModel): 
    """Final ranked drug candidate""" 
    rank: int 
    smiles: str 
    generation_score: float 
    dock_score: float             # kcal/mol 
    qed: float 
    composite_score: float        # 30% gen + 40% dock + 30% QED 
    lipinski_pass: bool 
    molecular_weight: float 
    logp: float 

 

PipelineConfig 

python 
class PipelineConfig(BaseModel): 



    """Pipeline execution configuration""" 
    mode: str                     # full, target, drug, demo 
    num_candidates: int = 100 
    min_qed: float = 0.3 
    min_dock_score: float = -6.0 
    molmim_url: str = "http://localhost:8001/v1/generate" 
    diffdock_url: str = "http://localhost:8002/v1/dock" 

 

Additional models: StructureInfo, StructureManifest, MoleculeProperties, GeneratedMolecule, DockingResult, 
PipelineRun. 

 

 

17. Nextflow DSL2 Orchestration 

Pipeline Modes 

Mode Stages Description 

full 1 → 2 → 3 Complete end-to-end pipeline 

target 2 → 3 Skip genomics, use existing VCF 

drug 3 only Skip to drug discovery with known 
target 

demo 1 → 2 → 3 Pre-configured VCP/FTD demonstration 

genomics_only 1 only Run only variant calling 
 

Main Pipeline Entry (main.nf) 

groovy 
#!/usr/bin/env nextflow 
nextflow.enable.dsl=2 
  
include { GENOMICS_PIPELINE } from './modules/genomics' 
include { RAG_CHAT_PIPELINE } from './modules/rag_chat' 
include { DRUG_DISCOVERY_PIPELINE } from './modules/drug_discovery' 
include { REPORTING } from './modules/reporting' 
  
workflow { 
    if (params.mode in ['full', 'demo', 'genomics_only']) { 
        GENOMICS_PIPELINE(params.fastq_r1, params.fastq_r2, params.reference) 
    } 
    if (params.mode in ['full', 'demo', 'target']) { 
        RAG_CHAT_PIPELINE(...) 
    } 
    if (params.mode in ['full', 'demo', 'target', 'drug']) { 
        DRUG_DISCOVERY_PIPELINE(...) 
    } 
    REPORTING(DRUG_DISCOVERY_PIPELINE.out.candidates) 
} 

 



Nextflow Profiles 

Profile Description 

standard Default local execution 

docker Docker container execution 

singularity Singularity container execution 

dgx_spark DGX Spark optimized (GPU resources) 

slurm HPC cluster submission 

test Minimal test data 
 

Pipeline Launcher (run_pipeline.py) 

bash 
# Full pipeline 
python run_pipeline.py --mode full \ 
  --fastq-r1 /data/HG002_R1.fastq.gz \ 
  --fastq-r2 /data/HG002_R2.fastq.gz \ 
  --reference /reference/GRCh38.fa 
  
# Demo mode (pre-configured VCP/FTD) 
python run_pipeline.py --mode demo 
  
# Drug discovery only 
python run_pipeline.py --mode drug --target-gene VCP 

 

 

18. Landing Page & Service Health 

Landing Page (Port 8080) 

The Flask-based landing page serves as the entry point for the HCLS AI Factory, providing a 10-service health 
status dashboard, pipeline mode selector, quick-start links, real-time status with green/red indicators, and 
pipeline execution history. 

Service Health Check Implementation 

python 
SERVICES = [ 
    {"name": "Parabricks Portal", "port": 5000}, 
    {"name": "Milvus Vector DB", "port": 19530}, 
    {"name": "RAG API", "port": 5001}, 
    {"name": "Streamlit Chat", "port": 8501}, 
    {"name": "MolMIM NIM", "port": 8001}, 
    {"name": "DiffDock NIM", "port": 8002}, 
    {"name": "Discovery UI", "port": 8505}, 
    {"name": "Grafana", "port": 3000}, 
    {"name": "Prometheus", "port": 9099}, 
    {"name": "DCGM Exporter", "port": 9400}, 
] 

  



19. Monitoring Stack 

Grafana (Port 3000) 

Parameter Value 

Image grafana/grafana:10.2.2 

Default User admin / changeme 

Dashboards HCLS AI Factory (GPU, pipeline, services) 

Data Source Prometheus 

 

Prometheus (Port 9099) 

Parameter Value 

Image prom/prometheus:v2.48.0 

Internal Port 9090 → External 9099 

Retention 30 days 

Targets Node Exporter, DCGM Exporter, service metrics 

 

DCGM Exporter (Port 9400) 

Metric Description 

DCGM_FI_DEV_GPU_UTIL GPU utilization percentage 

DCGM_FI_DEV_FB_USED GPU memory used (bytes) 

DCGM_FI_DEV_FB_FREE GPU memory free (bytes) 

DCGM_FI_DEV_GPU_TEMP GPU temperature (°C) 

DCGM_FI_DEV_POWER_USAGE GPU power draw (watts) 

DCGM_FI_DEV_SM_CLOCK SM clock frequency (MHz) 
 

Key Dashboard Panels 

1.  GPU Utilization Timeline — fq2bam → DeepVariant → MolMIM/DiffDock bursts 

2.  Pipeline Stage Progress — Stage 1/2/3 completion with timing 

3.  Memory Pressure — Unified memory usage across CPU + GPU 
4.  Service Health Grid — Green/red status for all 10 services 

5.  Variant Processing Rate — Variants annotated per second 

6.  Drug Discovery Throughput — Molecules generated/docked per minute 

  



20. Cross-Modal Integration 

HCLS AI Factory Ecosystem 

The genomics-to-drug-discovery pipeline integrates with the broader HCLS AI Factory, including the Imaging 
Intelligence Agent: 

Cross-Modal Triggers 

Trigger Source Target Action 

Lung-RADS 4B+ Imaging Agent Genomics Pipeline Initiate tumor profiling 

Pathogenic Variant Genomics Pipeline Drug Discovery Generate targeted therapies 

Drug Candidates Drug Discovery Imaging Agent Combined clinical report 
 

NVIDIA FLARE — Federated Learning 

For multi-site deployments (Phase 3), NVIDIA FLARE enables federated model training. Models train locally at 
each site; only model updates (not patient data) are shared. Raw genomic data never leaves the institution. 

 

 

21. Configuration Reference 

Environment Variables 

Variable Default Description 

ANTHROPIC_API_KEY (required) Anthropic API key for Claude 

NGC_API_KEY (required) NVIDIA NGC key for BioNeMo NIMs 

REFERENCE_GENOME /reference/GRCh38.fa Path to GRCh38 reference 

MILVUS_HOST localhost Milvus server hostname 

MILVUS_PORT 19530 Milvus gRPC port 

MOLMIM_URL http://localhost:8001 MolMIM NIM endpoint 

DIFFDOCK_URL http://localhost:8002 DiffDock NIM endpoint 

CLAUDE_MODEL claude-sonnet-4-20250514 Claude model identifier 

CLAUDE_TEMPERATURE 0.3 LLM temperature 

PIPELINE_MODE full Pipeline execution mode 

NUM_CANDIDATES 100 Drug candidates to generate 

MIN_QED 0.3 Minimum QED threshold 

MIN_DOCK_SCORE -6.0 Minimum docking score (kcal/mol) 

 



AlphaMissense Thresholds 

python 
AM_PATHOGENIC_THRESHOLD = 0.564 
AM_AMBIGUOUS_LOWER = 0.34 
AM_AMBIGUOUS_UPPER = 0.564 
AM_BENIGN_THRESHOLD = 0.34 

 

Scoring Weights 

python 
SCORING_WEIGHTS = { 
    "generation": 0.30,   # MolMIM generation confidence 
    "docking": 0.40,      # DiffDock binding affinity 
    "qed": 0.30           # RDKit drug-likeness 
} 

 

Drug-Likeness Thresholds 

python 
LIPINSKI = {"max_mw": 500, "max_logp": 5, "max_hbd": 5, "max_hba": 10} 
QED = {"drug_like": 0.67, "moderate": 0.49} 
DOCKING = {"excellent": -8.0, "good": -6.0, "moderate": -4.0, "minimum": -6.0} 

 

 

22. Deployment Roadmap 

Phase 1: Proof Build 

Parameter Value 

Hardware NVIDIA DGX Spark ($3,999) 

Orchestration Docker Compose 

Scale Single patient, sequential processing 

GPU 1× GB10 

Memory 128 GB unified 
 

Phase 2: Departmental 
Parameter Value 

Hardware 1–2× DGX B200 

Orchestration Kubernetes 

Scale Multiple concurrent patients 

GPU 8× B200 per node 



Memory 1–2 TB HBM3e 

 

Phase 3: Enterprise / Multi-Site 

Parameter Value 

Hardware DGX SuperPOD 

Orchestration Kubernetes + NVIDIA FLARE 

Scale Thousands of concurrent patients 

GPU Hundreds of B200 GPUs 

Privacy Federated learning (data stays local) 
 

Scaling Considerations 

Bottleneck Phase 1 Solution Phase 2+ Solution 

Genomics throughput Sequential (1 sample) Parallel Parabricks instances 

Milvus query latency Single-node Milvus Cluster with sharding 

BioNeMo inference Single NIM per model Multiple NIM replicas 

Storage I/O NVMe direct GPUDirect Storage + RAID 
 

 

23. Testing Strategy 

Unit Tests 

Component Test Focus 

VCF Parser Variant extraction, quality filtering 

Annotator ClinVar/AlphaMissense/VEP lookup accuracy 

Milvus Client Index creation, search recall 

MolMIM Client SMILES generation, request format 

DiffDock Client Docking request/response parsing 

RDKit Scoring Lipinski, QED, TPSA calculations 

Composite Scorer Weight application, normalization 

 

 



Integration Tests 

Test Validates 

VCF → Annotation → Milvus End-to-end Stage 2 pipeline 

Target → PDB → MolMIM → DiffDock End-to-end Stage 3 pipeline 

Health check endpoints All 10 services responding 

Nextflow modes full, target, drug, demo execution 
 

Demo Mode Validation 

The demo pipeline mode uses pre-configured inputs to validate the complete pipeline. Input: HG002 FASTQ 
subset. Expected: VCP identified as target with rs188935092 evidence. Output: 100 ranked novel VCP inhibitor 
candidates. 

 

 

24. Implementation Sequence 

Recommended Build Order 

1.  Infrastructure: Docker Compose, Milvus, monitoring stack 

2.  Stage 1 — Genomics: Parabricks container, fq2bam, DeepVariant, VCF output 
3.  Stage 2 — Annotation: ClinVar + AlphaMissense + VEP pipeline 

4.  Stage 2 — Vector DB: Milvus schema, BGE embedding, IVF_FLAT index 

5.  Stage 2 — RAG: Claude integration, knowledge base, query expansion 

6.  Stage 2 — Chat UI: Streamlit interface, REST API 
7.  Stage 3 — Structure: RCSB PDB retrieval, Cryo-EM scoring 

8.  Stage 3 — Generation: MolMIM NIM, molecule generation 

9.  Stage 3 — Docking: DiffDock NIM, binding prediction 

10.  Stage 3 — Scoring: RDKit properties, composite ranking 
11.  Stage 3 — Reporting: PDF generation, Discovery UI 

12.  Orchestration: Nextflow DSL2, pipeline modes, landing page 

13.  Testing: Unit tests, integration tests, demo mode validation 

14.  Monitoring: Grafana dashboards, alerting rules 
 

Key Dependencies 
GRCh38 reference → BWA-MEM2 index → fq2bam alignment 
ClinVar + AlphaMissense databases → Annotation pipeline 
Milvus running → Embedding indexing → RAG queries 
BioNeMo NIMs running → Molecule generation + docking 



All services healthy → Landing page green status 
 

 

This Project Bible is the authoritative technical reference for the HCLS AI Factory. All other documentation assets 
derive their technical details from this source. 


