
Open-Source Project

Project Bible
HCLS AI Factory
Implementation Reference
Complete architecture, pipeline stages, schemas, scoring formulas, and implementation sequences for building the HCLS AI Factory on NVIDIA DGX Spark — from patient DNA to novel drug candidates.
NVIDIA DGX Spark | Parabricks | BioNeMo

02/2026 | Version 1.0 | Apache 2.0 License
Author: Adam Jones

Table of Contents
1. Project Overview & Goals
2. DGX Spark Hardware Reference
3. Repository Layout
4. Docker Compose Services
5. Stage 1: Genomics Pipeline
6. Stage 2: RAG/Chat Pipeline
7. Milvus Vector Database Schema
8. Variant Annotation Pipeline
9. Knowledge Base — 201 Genes, 13 Therapeutic Areas
10. Anthropic Claude LLM Integration
11. Stage 3: Drug Discovery Pipeline
12. BioNeMo NIM Services
13. Drug-Likeness Scoring
14. Cryo-EM Structure Evidence
15. VCP/FTD Demo Walkthrough
16. Pydantic Data Models
17. Nextflow DSL2 Orchestration
18. Landing Page & Service Health
19. Monitoring Stack
20. Cross-Modal Integration
21. Configuration Reference
22. Deployment Roadmap
23. Testing Strategy
24. Implementation Sequence

1. Project Overview & Goals
What This Platform Does
The HCLS AI Factory is an end-to-end precision medicine platform that takes a patient’s raw DNA sequencing data (FASTQ) and produces ranked novel drug candidates — all on a single NVIDIA DGX Spark desktop workstation. Three GPU-accelerated stages execute sequentially: variant calling, RAG-grounded target identification, and generative drug discovery.
Three-Stage Pipeline
	Stage
	Function
	Duration
	Key Output

	1 — Genomics
	BWA-MEM2 alignment + DeepVariant calling
	120-240 min
	VCF (~11.7M variants)

	2 — RAG/Chat
	Annotation → Embedding → LLM reasoning
	Interactive
	Target gene + evidence

	3 — Drug Discovery
	MolMIM → DiffDock → RDKit scoring
	8-16 min
	100 ranked drug candidates

End-to-End Flow
Patient DNA → Illumina Sequencer → FASTQ (~200 GB)
 → Parabricks fq2bam → BAM
 → DeepVariant → VCF (11.7M variants)
 → ClinVar + AlphaMissense + VEP annotation
 → Milvus vector indexing (3.5M embeddings)
 → Claude RAG reasoning → Target hypothesis
 → RCSB PDB structure retrieval
 → MolMIM molecule generation
 → DiffDock molecular docking
 → RDKit drug-likeness scoring
 → 100 ranked novel drug candidates + PDF report

Design Principles
GPU-first: Every compute-intensive step runs on the GB10 GPU
Clinically grounded: ClinVar, AlphaMissense, and VEP provide evidence-based annotation
Reproducible: Nextflow DSL2 orchestration with containerized processes
Open: Apache 2.0 license, open-source tools, public reference databases
Desktop-scale: Runs entirely on a $3,999 DGX Spark

2. DGX Spark Hardware Reference
Specifications
	Parameter
	Value

	CPU
	NVIDIA Grace (ARM64 / aarch64), 144 cores

	GPU
	NVIDIA GB10, 1 GPU

	Memory
	128 GB unified LPDDR5x (CPU + GPU shared)

	Storage
	NVMe, high-throughput I/O

	Storage Access
	GPUDirect Storage (zero-copy GPU access)

	Price
	$3,999

	OS
	Ubuntu-based (NVIDIA DGX OS)

Critical: ARM64 Architecture
ALL containers must be ARM64-compatible. The Grace CPU is aarch64, not x86_64. This affects base Docker images, Python wheels, NVIDIA container images (NGC ARM64 variants), and any compiled C/C++ extensions.
Unified Memory Model
The 128 GB LPDDR5x is shared between CPU and GPU — there is no separate GPU VRAM. No explicit CPU→GPU data transfers needed for many operations. Memory pressure from CPU workloads reduces GPU-available memory. Parabricks fq2bam peaks at ~40 GB, DeepVariant at ~60 GB.
Storage Requirements
	Dataset
	Size
	Notes

	GRCh38 reference
	3.1 GB
	Pre-indexed for BWA-MEM2

	FASTQ input (30× WGS)
	~200 GB
	HG002 paired-end

	BAM intermediate
	~100 GB
	Temporary, deleted after VCF

	ClinVar database
	~1.2 GB
	4.1M clinical variants

	AlphaMissense database
	~4 GB
	71M predictions

	Milvus index
	~2 GB
	3.5M × 384-dim vectors

	BioNeMo model cache
	~10 GB
	MolMIM + DiffDock weights

	Total minimum
	~320 GB
	Plus OS and Docker layers

Deployment Progression
	Phase
	Hardware
	Price
	Scope

	1 — Proof Build
	DGX Spark
	$3,999
	Single patient, Docker Compose

	2 — Departmental
	1–2× DGX B200
	$500K–$1M
	Multiple concurrent patients, Kubernetes

	3 — Enterprise
	DGX SuperPOD
	$7M–$60M+
	Thousands concurrent, FLARE federated

3. Repository Layout
hcls-ai-factory-public/
├── README.md # Project overview
├── LICENSE # Apache 2.0
├── docker-compose.yml # All services
├── start-services.sh # Startup orchestration
├── .env.example # Environment template
│
├── hls-orchestrator/ # Nextflow pipeline
│ ├── main.nf # DSL2 entry point
│ ├── nextflow.config # Profiles and parameters
│ ├── run_pipeline.py # Python CLI launcher
│ └── modules/ # genomics/rag_chat/drug_discovery/reporting
│
├── genomics-pipeline/ # Stage 1: Parabricks
│ ├── src/run_parabricks.py # fq2bam + DeepVariant
│ └── src/web_portal.py # Flask portal (:5000)
│
├── rag-chat-pipeline/ # Stage 2: RAG + Claude
│ ├── src/rag_engine.py # Core RAG (23 KB)
│ ├── src/milvus_client.py # Vector DB client (13 KB)
│ ├── src/annotator.py # ClinVar+AM+VEP (23 KB)
│ ├── src/knowledge.py # 201 genes (88 KB)
│ └── src/streamlit_chat.py # Chat UI (:8501)
│
├── drug-discovery-pipeline/ # Stage 3: BioNeMo + RDKit
│ ├── src/pipeline.py # 10-stage orchestration (18 KB)
│ ├── src/nim_clients.py # MolMIM+DiffDock clients (15 KB)
│ ├── src/molecule_generator.py # SMILES generation (11 KB)
│ ├── src/cryoem_evidence.py # Cryo-EM scoring (6 KB)
│ └── src/models.py # Pydantic models (8 KB)
│
├── landing-page/ # Entry point (:8080)
├── monitoring/ # Prometheus + Grafana
└── docs/ # Documentation (122 KB+)

4. Docker Compose Services
Port Allocation
	Service
	Port
	Protocol
	Stage

	Landing Page
	8080
	HTTP (Flask)
	Orchestration

	Genomics Portal
	5000
	HTTP (Flask)
	Stage 1

	RAG REST API
	5001
	HTTP REST
	Stage 2

	Milvus Vector DB
	19530
	gRPC
	Stage 2

	Attu (Milvus UI)
	8000
	HTTP
	Stage 2

	Streamlit Chat
	8501
	HTTP
	Stage 2

	MolMIM NIM
	8001
	HTTP REST
	Stage 3

	DiffDock NIM
	8002
	HTTP REST
	Stage 3

	Discovery UI
	8505
	HTTP (Streamlit)
	Stage 3

	Discovery Portal
	8510
	HTTP
	Stage 3

	Grafana
	3000
	HTTP
	Monitoring

	Prometheus
	9099
	HTTP
	Monitoring

	Node Exporter
	9100
	HTTP
	Monitoring

	DCGM Exporter
	9400
	HTTP
	Monitoring

Key Container Images
	Service
	Image
	Notes

	Parabricks
	nvcr.io/nvidia/clara/clara-parabricks:4.6.0-1
	GPU-accelerated genomics

	Milvus
	milvusdb/milvus:v2.4-latest
	Vector database

	MolMIM
	nvcr.io/nvidia/clara/bionemo-molmim:1.0
	Molecule generation NIM

	DiffDock
	nvcr.io/nvidia/clara/diffdock:1.0
	Molecular docking NIM

	Grafana
	grafana/grafana:10.2.2
	Dashboards

	Prometheus
	prom/prometheus:v2.48.0
	Metrics TSDB

Service Startup Order
The start-services.sh script orchestrates startup in dependency order:
1. Infrastructure (Milvus, monitoring)
2. Stage 1 services (Parabricks, genomics portal)
3. Stage 2 services (RAG engine, Streamlit chat)
4. Stage 3 services (BioNeMo NIMs, discovery UI)
5. Landing page (health monitor for all 10 services)
Health Monitoring
The landing page at port 8080 monitors 10 services:
	Service
	Health Endpoint
	Interval

	Parabricks
	Port 5000 /health
	30s

	Milvus
	Port 19530 gRPC ping
	30s

	RAG API
	Port 5001 /health
	30s

	Chat UI
	Port 8501 /healthz
	30s

	MolMIM NIM
	Port 8001 /v1/health/ready
	30s

	DiffDock NIM
	Port 8002 /v1/health/ready
	30s

	Discovery UI
	Port 8505 /healthz
	30s

	Grafana
	Port 3000 /api/health
	30s

	Prometheus
	Port 9099 /-/healthy
	30s

	DCGM Exporter
	Port 9400 /metrics
	30s

5. Stage 1: Genomics Pipeline
Overview
Stage 1 takes raw FASTQ files from a sequencer and produces a Variant Call Format (VCF) file using NVIDIA Parabricks — a GPU-accelerated implementation of industry-standard bioinformatics tools.
Input Specifications
	Parameter
	Value

	Sample
	HG002 (GIAB reference standard)

	Coverage
	30× whole-genome sequencing (WGS)

	Read Length
	2×250 bp paired-end

	File Size
	~200 GB (FASTQ pair)

	Reference Genome
	GRCh38 (3.1 GB, pre-indexed)

	Format
	FASTQ (gzip-compressed)

Step 1: BWA-MEM2 Alignment (fq2bam)
bash
pbrun fq2bam \
 --ref /reference/GRCh38.fa \
 --in-fq /data/HG002_R1.fastq.gz /data/HG002_R2.fastq.gz \
 --out-bam /output/HG002.bam \
 --num-gpus 1

	Metric
	Value

	Duration
	20-45 minutes

	GPU Utilization
	70-90%

	Peak Memory
	~40 GB

	Output
	Sorted BAM + BAI index

	Algorithm
	BWA-MEM2 (GPU-accelerated)

Step 2: DeepVariant Variant Calling
bash
pbrun deepvariant \
 --ref /reference/GRCh38.fa \
 --in-bam /output/HG002.bam \
 --out-variants /output/HG002.vcf.gz \
 --num-gpus 1

	Metric
	Value

	Duration
	10-35 minutes

	GPU Utilization
	80-95%

	Peak Memory
	~60 GB

	Output
	VCF (gzip-compressed + tabix index)

	Algorithm
	Google DeepVariant (CNN-based, >99% accuracy)

VCF Output Statistics
	Metric
	Count

	Total Variants
	~11.7M

	High-Quality (QUAL>30)
	~3.5M

	SNPs
	~4.2M

	Indels
	~1.0M

	Coding Region Variants
	~35,000

	Multi-allelic Sites
	~150,000

Parabricks Container
Image: nvcr.io/nvidia/clara/clara-parabricks:4.6.0-1
GPU: Required (CUDA). Volumes: /reference, /data, /output. Port: 5000 (Flask web portal).

6. Stage 2: RAG/Chat Pipeline
Overview
Stage 2 annotates VCF variants with clinical and functional databases, indexes them in a Milvus vector database, and uses Anthropic Claude with RAG to identify druggable gene targets supported by evidence.
Architecture
VCF (11.7M variants)
 → Quality filter (QUAL>30) → 3.5M variants
 → ClinVar annotation → clinical significance
 → AlphaMissense annotation → pathogenicity prediction
 → VEP annotation → functional consequences
 → BGE-small-en-v1.5 embedding → 384-dim vectors
 → Milvus IVF_FLAT indexing → 3.5M searchable embeddings
 → Claude RAG query → target hypothesis with evidence chain

Annotation Funnel
	Stage
	Variant Count
	Filter

	Raw VCF
	~11.7M
	—

	Quality filter
	~3.5M
	QUAL > 30

	ClinVar match
	~35,616
	Clinical significance annotated

	AlphaMissense match
	~6,831
	AI pathogenicity predicted

	Coding + pathogenic
	~2,400
	Actionable subset

Embedding Model
	Parameter
	Value

	Model
	BGE-small-en-v1.5

	Dimensions
	384

	Index Type
	IVF_FLAT

	Index Params
	nlist=1024

	Search Params
	nprobe=16

	Distance Metric
	COSINE

	Total Embeddings
	~3.5M

Query Flow
1. User asks a natural language question in the Streamlit chat
2. Query is expanded using 10 therapeutic area keyword maps
3. BGE-small-en-v1.5 embeds the expanded query
4. Milvus performs approximate nearest-neighbor search (top_k=20)
5. Retrieved variant contexts are assembled into a RAG prompt
6. Claude processes the prompt with knowledge base grounding
7. Response includes gene target, evidence chain, and confidence

7. Milvus Vector Database Schema
Collection: genomic_evidence
17 fields capturing genomic position, annotation, and embedding:
	Field
	Type
	Description

	id
	INT64 (PK, auto)
	Primary key

	embedding
	FLOAT_VECTOR(384)
	BGE-small-en-v1.5 embedding

	chrom
	VARCHAR(10)
	Chromosome (chr1-22, chrX, chrY)

	pos
	INT64
	Genomic position

	ref
	VARCHAR(1000)
	Reference allele

	alt
	VARCHAR(1000)
	Alternate allele

	qual
	FLOAT
	Variant quality score

	gene
	VARCHAR(100)
	Gene symbol

	consequence
	VARCHAR(200)
	Functional consequence

	impact
	VARCHAR(20)
	HIGH, MODERATE, LOW, MODIFIER

	genotype
	VARCHAR(10)
	Sample genotype (0/1, 1/1)

	text_summary
	VARCHAR(2000)
	Human-readable description

	clinical_significance
	VARCHAR(200)
	ClinVar classification

	rsid
	VARCHAR(20)
	dbSNP identifier

	disease_associations
	VARCHAR(2000)
	Associated diseases

	am_pathogenicity
	FLOAT
	AlphaMissense score (0-1)

	am_class
	VARCHAR(20)
	pathogenic/ambiguous/benign

Index Configuration
python
index_params = {
 "index_type": "IVF_FLAT",
 "metric_type": "COSINE",
 "params": {"nlist": 1024}
}

search_params = {
 "metric_type": "COSINE",
 "params": {"nprobe": 16}
}

Milvus Infrastructure
	Component
	Port
	Purpose

	Milvus standalone
	19530
	gRPC vector operations

	Attu UI
	8000
	Web-based Milvus management

	etcd
	2379
	Metadata storage

	MinIO
	9000
	Object storage for indexes

8. Variant Annotation Pipeline
ClinVar Integration
	Parameter
	Value

	Database
	ClinVar (NCBI)

	Total Variants
	4.1M clinical variants

	Match Rate
	~35,616 / 3.5M variants (1.0%)

	Classifications
	Pathogenic, Likely pathogenic, VUS, Likely benign, Benign

	Update Frequency
	Monthly releases

AlphaMissense Integration
	Parameter
	Value

	Database
	AlphaMissense (DeepMind)

	Total Predictions
	71,697,560 missense variant predictions

	Match Rate
	~6,831 / 35,616 ClinVar variants (19.2%)

	Model
	AlphaFold-derived protein structure features

	Output
	Pathogenicity score (0.0-1.0)

AlphaMissense Thresholds
	Class
	Score Range
	Interpretation

	Pathogenic
	> 0.564
	Likely disease-causing

	Ambiguous
	0.34 – 0.564
	Uncertain significance

	Benign
	< 0.34
	Likely neutral

Ensembl VEP Integration
	Parameter
	Value

	Tool
	Ensembl Variant Effect Predictor (VEP)

	Purpose
	Functional consequence annotation

	Impact Levels
	HIGH, MODERATE, LOW, MODIFIER

	Key Consequences
	missense_variant, stop_gained, frameshift_variant, splice_donor_variant

Annotation Pipeline Code Pattern
python
def annotate_variants(vcf_path: str) -> List[AnnotatedVariant]:
 """VCF → ClinVar → AlphaMissense → VEP → Annotated variants"""
 variants = parse_vcf(vcf_path, min_qual=30) # ~3.5M pass
 variants = annotate_clinvar(variants) # Clinical significance
 variants = annotate_alphamissense(variants) # AI pathogenicity
 variants = annotate_vep(variants) # Functional consequences
 return variants

9. Knowledge Base — 201 Genes, 13 Therapeutic Areas
Gene Distribution
	Therapeutic Area
	Count
	Example Genes

	Neurology
	36
	VCP, APP, PSEN1, MAPT, SOD1, FUS, C9orf72

	Oncology
	27
	EGFR, BRAF, KRAS, TP53, BRCA1, BRCA2, PIK3CA

	Metabolic
	22
	GCK, PPARG, SLC2A2, ABCA1, PCSK9

	Infectious Disease
	21
	ACE2, CCR5, IFITM3, TLR4, TMPRSS2

	Respiratory
	13
	CFTR, SERPINA1, MUC5B, TERT

	Rare Disease
	12
	VCP, HTT, SMN1, DMD, CFTR

	Hematology
	12
	HBB, HBA1, F5, JAK2, CALR

	GI/Hepatology
	12
	HFE, ATP7B, NOD2, SERPINA1

	Pharmacogenomics
	11
	CYP2D6, CYP2C19, CYP3A4, DPYD, TPMT

	Ophthalmology
	11
	RHO, RPE65, RS1, ABCA4

	Cardiovascular
	10
	LDLR, PCSK9, SCN5A, MYBPC3, KCNQ1

	Immunology
	9
	HLA-B, TNF, IL6, JAK1, CTLA4

	Dermatology
	9
	FLG, MC1R, TYR, KRT14

Total: 201 genes, 171 druggable targets (85% druggability rate).
Knowledge Base Entry Structure
python
{
 "gene": "VCP",
 "uniprot": "P55072",
 "therapeutic_area": "Neurology",
 "diseases": ["Frontotemporal Dementia", "ALS", "IBMPFD"],
 "druggability": "High",
 "drug_targets": ["D2 ATPase domain", "N-D1 interface"],
 "known_inhibitors": ["CB-5083", "NMS-873"],
 "variant_hotspots": ["R155H", "R191Q", "A232E"],
 "pathway": "Ubiquitin-proteasome system",
 "mechanism": "AAA+ ATPase, protein homeostasis"
}

Query Expansion Maps
10 therapeutic area query expansion maps enrich user queries with domain-specific terminology for improved Milvus retrieval.

10. Anthropic Claude LLM Integration
Configuration
	Parameter
	Value

	Model
	claude-sonnet-4-20250514

	Temperature
	0.3

	Max Tokens
	4096

	API
	Anthropic Messages API

	Role
	RAG-grounded clinical reasoning

RAG Prompt Structure
python
system_prompt = """You are a clinical genomics specialist
analyzing patient variant data. Ground all responses in
the retrieved variant evidence and knowledge base. Cite
specific variants, genes, and clinical classifications.
When recommending drug targets, explain the evidence
chain from variant to disease mechanism to druggability."""

user_prompt = f"""
Retrieved Variant Evidence (top {top_k} matches)
{formatted_variants}

Knowledge Base Context
{knowledge_context}

User Question
{user_question}
"""

Response Format
Claude generates structured target hypotheses including gene, confidence level, evidence chain, therapeutic area, diseases, and recommended action for downstream drug discovery.
Note: Claude is only used in this environment for functional testing. A local LLM that aligns with FDA clinical standards would be used in a clinical setting.

11. Stage 3: Drug Discovery Pipeline
Overview
Stage 3 takes a target gene hypothesis from Stage 2 and produces 100 ranked novel drug candidates using BioNeMo generative chemistry, molecular docking, and drug-likeness scoring.
10-Stage Pipeline
	Stage
	Process
	Description

	1
	Initialize
	Load target hypothesis, validate inputs

	2
	Normalize Target
	Map gene → UniProt ID → PDB structures

	3
	Structure Discovery
	Query RCSB PDB for Cryo-EM/X-ray structures

	4
	Structure Preparation
	Score and rank structures, select best site

	5
	Molecule Generation
	MolMIM generates novel SMILES from seed

	6
	Chemistry QC
	RDKit validates chemical feasibility

	7
	Conformer Generation
	RDKit 3D conformer embedding (ETKDG)

	8
	Molecular Docking
	DiffDock predicts binding poses and affinities

	9
	Composite Ranking
	30% gen + 40% dock + 30% QED weighted scoring

	10
	Reporting
	PDF report generation (ReportLab)

Pipeline Configuration
python
PIPELINE_CONFIG = {
 "num_candidates": 100,
 "molmim_endpoint": "http://localhost:8001/v1/generate",
 "diffdock_endpoint": "http://localhost:8002/v1/dock",
 "min_qed": 0.3,
 "min_dock_score": -6.0, # kcal/mol
 "scoring_weights": {
 "generation": 0.30,
 "docking": 0.40,
 "qed": 0.30
 }
}

UniProt Mappings
	Gene
	UniProt ID
	Function

	VCP
	P55072
	AAA+ ATPase, protein homeostasis

	EGFR
	P00533
	Receptor tyrosine kinase

	BRAF
	P15056
	Serine/threonine kinase

	KRAS
	P01116
	GTPase signaling

12. BioNeMo NIM Services
MolMIM (Port 8001) — Molecule Generation
	Parameter
	Value

	Endpoint
	POST http://localhost:8001/v1/generate

	Model
	MolMIM (Molecular Masked Inverse Model)

	Input
	Seed SMILES string

	Output
	Novel SMILES candidates

	Container
	nvcr.io/nvidia/clara/bionemo-molmim:1.0

MolMIM Request/Response
json
Request
{"smiles": "CC(=O)Nc1ccc(O)cc1",
 "num_molecules": 100,
 "temperature": 0.7, "top_k": 50}

Response
{"molecules": [
 {"smiles": "CC(=O)Nc1ccc(O)c(F)c1", "score": 0.85},
 {"smiles": "CC(=O)Nc1ccc(O)c(Cl)c1", "score": 0.82}
]}

DiffDock (Port 8002) — Molecular Docking
	Parameter
	Value

	Endpoint
	POST http://localhost:8002/v1/dock

	Model
	DiffDock (diffusion-based docking)

	Input
	Ligand SMILES + protein PDB structure

	Output
	Binding pose + affinity score (kcal/mol)

	Container
	nvcr.io/nvidia/clara/diffdock:1.0

Docking Score Interpretation
	Score (kcal/mol)
	Interpretation

	-12 to -8
	Excellent binding affinity

	-8 to -6
	Good binding affinity

	-6 to -4
	Moderate binding affinity

	> -4
	Weak binding affinity

13. Drug-Likeness Scoring
Lipinski’s Rule of Five
	Rule
	Threshold
	Description

	Molecular Weight
	≤ 500 Da
	Oral absorption limit

	LogP
	≤ 5
	Lipophilicity

	H-Bond Donors
	≤ 5
	NH + OH groups

	H-Bond Acceptors
	≤ 10
	N + O atoms

QED (Quantitative Estimate of Drug-likeness)
	Range
	Interpretation

	> 0.67
	Drug-like (favorable properties)

	0.49 – 0.67
	Moderate drug-likeness

	< 0.49
	Less drug-like

TPSA (Topological Polar Surface Area)
	Range (Å²)
	Interpretation

	< 140
	Good oral bioavailability

	60–90
	Optimal range

	> 140
	Poor oral absorption

Composite Scoring Formula
python
def compute_composite_score(gen_score, dock_score, qed_score):
 """30% generation + 40% docking + 30% QED"""
 dock_normalized = max(0.0, min(1.0, (10.0 + dock_score) / 20.0))
 composite = (
 0.30 * gen_score +
 0.40 * dock_normalized +
 0.30 * qed_score
)
 return composite

RDKit Property Calculation
python
from rdkit import Chem
from rdkit.Chem import Descriptors, QED

def calculate_properties(smiles: str) -> dict:
 mol = Chem.MolFromSmiles(smiles)
 return {
 "molecular_weight": Descriptors.MolWt(mol),
 "logp": Descriptors.MolLogP(mol),
 "hbd": Descriptors.NumHDonors(mol),
 "hba": Descriptors.NumHAcceptors(mol),
 "tpsa": Descriptors.TPSA(mol),
 "qed": QED.qed(mol),
 "lipinski_pass": all([
 Descriptors.MolWt(mol) <= 500,
 Descriptors.MolLogP(mol) <= 5,
 Descriptors.NumHDonors(mol) <= 5,
 Descriptors.NumHAcceptors(mol) <= 10,
])
 }

14. Cryo-EM Structure Evidence
Structure Scoring Algorithm
The pipeline automatically retrieves and scores PDB structures:
python
def score_structure(structure: StructureInfo) -> float:
 """Score PDB structure for drug discovery suitability.
 - Resolution: lower is better (max 5 Å cutoff)
 - Inhibitor-bound: +3 bonus
 - Druggable pockets: +0.5 per pocket
 - Cryo-EM method: +0.5"""
 score += max(0, 5.0 - resolution)
 if has_inhibitor_bound: score += 3.0
 score += num_druggable_pockets * 0.5
 if 'Cryo-EM' in method: score += 0.5
 return score

VCP Structures (Demo)
	PDB ID
	Resolution
	Method
	Description

	8OOI
	2.9 Å
	Cryo-EM
	WT VCP hexamer

	9DIL
	3.2 Å
	Cryo-EM
	Mutant VCP

	7K56
	2.5 Å
	Cryo-EM
	VCP complex

	5FTK
	2.3 Å
	X-ray
	VCP + CB-5083 inhibitor

VCP Binding Site
	Parameter
	Value

	Domain
	D2 ATPase domain

	Mechanism
	ATP-competitive inhibition

	Pocket Volume
	~450 Å³

	Druggability Score
	0.92

	Key Residues
	ALA464, GLY479, ASP320, GLY215

15. VCP/FTD Demo Walkthrough
Demo Target: Valosin-Containing Protein (VCP/p97)
	Parameter
	Value

	Gene
	VCP

	Protein
	p97 / Valosin-Containing Protein

	UniProt
	P55072

	Function
	AAA+ ATPase, ubiquitin-proteasome pathway

	Diseases
	Frontotemporal Dementia (FTD), ALS, IBMPFD

	Variant
	rs188935092 (chr9:35065263 G>A)

	ClinVar
	Pathogenic

	AlphaMissense
	0.87 (pathogenic, >0.564 threshold)

	Seed Compound
	CB-5083 (Phase I clinical VCP inhibitor)

Demo Flow
Stage 1 — Genomics (Demo Mode: ~20 min)
1. Load pre-processed HG002 FASTQ subset
2. Run Parabricks fq2bam alignment
3. Run DeepVariant variant calling
4. Output VCF with ~11.7M variants including rs188935092
Stage 2 — RAG/Chat (Interactive)
1. VCF annotated: ClinVar flags rs188935092 as pathogenic in VCP
2. AlphaMissense scores the missense variant at 0.87 (pathogenic)
3. 3.5M variants embedded and indexed in Milvus
4. User queries: "What are the most promising drug targets?"
5. Claude identifies VCP with full evidence chain
6. Target hypothesis: VCP → FTD → druggable D2 ATPase domain
Stage 3 — Drug Discovery (~10 min)
1. VCP → UniProt P55072 → PDB structure retrieval
2. Cryo-EM structures scored: 8OOI, 9DIL, 7K56, 5FTK
3. 5FTK selected (inhibitor-bound, highest score)
4. CB-5083 seed SMILES → MolMIM generates 100 novel analogs
5. RDKit validates Lipinski, QED, TPSA
6. DiffDock docks each candidate against VCP D2 domain
7. Composite ranking: 30% gen + 40% dock + 30% QED
8. Top candidates: novel VCP inhibitors with improved drug-likeness
9. PDF report generated via ReportLab
Expected Demo Output
Pipeline: HCLS AI Factory — VCP/FTD Demo
Target: VCP (P55072) — Frontotemporal Dementia
Seed: CB-5083 (ATP-competitive VCP inhibitor)
Structure: 5FTK (2.3 Å, X-ray, inhibitor-bound)

Results:
- 100 novel VCP inhibitor candidates generated
- 87 pass Lipinski's Rule of Five
- 72 have QED > 0.67 (drug-like)
- Top 10: docking scores -8.2 to -11.4 kcal/mol
- Composite scores range 0.68-0.89

16. Pydantic Data Models
Core Models (from models.py)
All data flows use Pydantic models for validation:
TargetHypothesis
python
class TargetHypothesis(BaseModel):
 """Output from Stage 2 — RAG-identified drug target"""
 gene: str # e.g., 'VCP'
 uniprot_id: str # e.g., 'P55072'
 confidence: str # high, medium, low
 evidence_chain: List[str]
 therapeutic_area: str
 diseases: List[str]
 druggability_score: float # 0-1 scale

RankedCandidate
python
class RankedCandidate(BaseModel):
 """Final ranked drug candidate"""
 rank: int
 smiles: str
 generation_score: float
 dock_score: float # kcal/mol
 qed: float
 composite_score: float # 30% gen + 40% dock + 30% QED
 lipinski_pass: bool
 molecular_weight: float
 logp: float

PipelineConfig
python
class PipelineConfig(BaseModel):
 """Pipeline execution configuration"""
 mode: str # full, target, drug, demo
 num_candidates: int = 100
 min_qed: float = 0.3
 min_dock_score: float = -6.0
 molmim_url: str = "http://localhost:8001/v1/generate"
 diffdock_url: str = "http://localhost:8002/v1/dock"

Additional models: StructureInfo, StructureManifest, MoleculeProperties, GeneratedMolecule, DockingResult, PipelineRun.

17. Nextflow DSL2 Orchestration
Pipeline Modes
	Mode
	Stages
	Description

	full
	1 → 2 → 3
	Complete end-to-end pipeline

	target
	2 → 3
	Skip genomics, use existing VCF

	drug
	3 only
	Skip to drug discovery with known target

	demo
	1 → 2 → 3
	Pre-configured VCP/FTD demonstration

	genomics_only
	1 only
	Run only variant calling

Main Pipeline Entry (main.nf)
groovy
#!/usr/bin/env nextflow
nextflow.enable.dsl=2

include { GENOMICS_PIPELINE } from './modules/genomics'
include { RAG_CHAT_PIPELINE } from './modules/rag_chat'
include { DRUG_DISCOVERY_PIPELINE } from './modules/drug_discovery'
include { REPORTING } from './modules/reporting'

workflow {
 if (params.mode in ['full', 'demo', 'genomics_only']) {
 GENOMICS_PIPELINE(params.fastq_r1, params.fastq_r2, params.reference)
 }
 if (params.mode in ['full', 'demo', 'target']) {
 RAG_CHAT_PIPELINE(...)
 }
 if (params.mode in ['full', 'demo', 'target', 'drug']) {
 DRUG_DISCOVERY_PIPELINE(...)
 }
 REPORTING(DRUG_DISCOVERY_PIPELINE.out.candidates)
}

Nextflow Profiles
	Profile
	Description

	standard
	Default local execution

	docker
	Docker container execution

	singularity
	Singularity container execution

	dgx_spark
	DGX Spark optimized (GPU resources)

	slurm
	HPC cluster submission

	test
	Minimal test data

Pipeline Launcher (run_pipeline.py)
bash
Full pipeline
python run_pipeline.py --mode full \
 --fastq-r1 /data/HG002_R1.fastq.gz \
 --fastq-r2 /data/HG002_R2.fastq.gz \
 --reference /reference/GRCh38.fa

Demo mode (pre-configured VCP/FTD)
python run_pipeline.py --mode demo

Drug discovery only
python run_pipeline.py --mode drug --target-gene VCP

18. Landing Page & Service Health
Landing Page (Port 8080)
The Flask-based landing page serves as the entry point for the HCLS AI Factory, providing a 10-service health status dashboard, pipeline mode selector, quick-start links, real-time status with green/red indicators, and pipeline execution history.
Service Health Check Implementation
python
SERVICES = [
 {"name": "Parabricks Portal", "port": 5000},
 {"name": "Milvus Vector DB", "port": 19530},
 {"name": "RAG API", "port": 5001},
 {"name": "Streamlit Chat", "port": 8501},
 {"name": "MolMIM NIM", "port": 8001},
 {"name": "DiffDock NIM", "port": 8002},
 {"name": "Discovery UI", "port": 8505},
 {"name": "Grafana", "port": 3000},
 {"name": "Prometheus", "port": 9099},
 {"name": "DCGM Exporter", "port": 9400},
]

19. Monitoring Stack
Grafana (Port 3000)
	Parameter
	Value

	Image
	grafana/grafana:10.2.2

	Default User
	admin / changeme

	Dashboards
	HCLS AI Factory (GPU, pipeline, services)

	Data Source
	Prometheus

Prometheus (Port 9099)
	Parameter
	Value

	Image
	prom/prometheus:v2.48.0

	Internal Port
	9090 → External 9099

	Retention
	30 days

	Targets
	Node Exporter, DCGM Exporter, service metrics

DCGM Exporter (Port 9400)
	Metric
	Description

	DCGM_FI_DEV_GPU_UTIL
	GPU utilization percentage

	DCGM_FI_DEV_FB_USED
	GPU memory used (bytes)

	DCGM_FI_DEV_FB_FREE
	GPU memory free (bytes)

	DCGM_FI_DEV_GPU_TEMP
	GPU temperature (°C)

	DCGM_FI_DEV_POWER_USAGE
	GPU power draw (watts)

	DCGM_FI_DEV_SM_CLOCK
	SM clock frequency (MHz)

Key Dashboard Panels
1. GPU Utilization Timeline — fq2bam → DeepVariant → MolMIM/DiffDock bursts
2. Pipeline Stage Progress — Stage 1/2/3 completion with timing
3. Memory Pressure — Unified memory usage across CPU + GPU
4. Service Health Grid — Green/red status for all 10 services
5. Variant Processing Rate — Variants annotated per second
6. Drug Discovery Throughput — Molecules generated/docked per minute

20. Cross-Modal Integration
HCLS AI Factory Ecosystem
The genomics-to-drug-discovery pipeline integrates with the broader HCLS AI Factory, including the Imaging Intelligence Agent:
Cross-Modal Triggers
	Trigger
	Source
	Target
	Action

	Lung-RADS 4B+
	Imaging Agent
	Genomics Pipeline
	Initiate tumor profiling

	Pathogenic Variant
	Genomics Pipeline
	Drug Discovery
	Generate targeted therapies

	Drug Candidates
	Drug Discovery
	Imaging Agent
	Combined clinical report

NVIDIA FLARE — Federated Learning
For multi-site deployments (Phase 3), NVIDIA FLARE enables federated model training. Models train locally at each site; only model updates (not patient data) are shared. Raw genomic data never leaves the institution.

21. Configuration Reference
Environment Variables
	Variable
	Default
	Description

	ANTHROPIC_API_KEY
	(required)
	Anthropic API key for Claude

	NGC_API_KEY
	(required)
	NVIDIA NGC key for BioNeMo NIMs

	REFERENCE_GENOME
	/reference/GRCh38.fa
	Path to GRCh38 reference

	MILVUS_HOST
	localhost
	Milvus server hostname

	MILVUS_PORT
	19530
	Milvus gRPC port

	MOLMIM_URL
	http://localhost:8001
	MolMIM NIM endpoint

	DIFFDOCK_URL
	http://localhost:8002
	DiffDock NIM endpoint

	CLAUDE_MODEL
	claude-sonnet-4-20250514
	Claude model identifier

	CLAUDE_TEMPERATURE
	0.3
	LLM temperature

	PIPELINE_MODE
	full
	Pipeline execution mode

	NUM_CANDIDATES
	100
	Drug candidates to generate

	MIN_QED
	0.3
	Minimum QED threshold

	MIN_DOCK_SCORE
	-6.0
	Minimum docking score (kcal/mol)

AlphaMissense Thresholds
python
AM_PATHOGENIC_THRESHOLD = 0.564
AM_AMBIGUOUS_LOWER = 0.34
AM_AMBIGUOUS_UPPER = 0.564
AM_BENIGN_THRESHOLD = 0.34

Scoring Weights
python
SCORING_WEIGHTS = {
 "generation": 0.30, # MolMIM generation confidence
 "docking": 0.40, # DiffDock binding affinity
 "qed": 0.30 # RDKit drug-likeness
}

Drug-Likeness Thresholds
python
LIPINSKI = {"max_mw": 500, "max_logp": 5, "max_hbd": 5, "max_hba": 10}
QED = {"drug_like": 0.67, "moderate": 0.49}
DOCKING = {"excellent": -8.0, "good": -6.0, "moderate": -4.0, "minimum": -6.0}

22. Deployment Roadmap
Phase 1: Proof Build
	Parameter
	Value

	Hardware
	NVIDIA DGX Spark ($3,999)

	Orchestration
	Docker Compose

	Scale
	Single patient, sequential processing

	GPU
	1× GB10

	Memory
	128 GB unified

Phase 2: Departmental
	Parameter
	Value

	Hardware
	1–2× DGX B200

	Orchestration
	Kubernetes

	Scale
	Multiple concurrent patients

	GPU
	8× B200 per node

	Memory
	1–2 TB HBM3e

Phase 3: Enterprise / Multi-Site
	Parameter
	Value

	Hardware
	DGX SuperPOD

	Orchestration
	Kubernetes + NVIDIA FLARE

	Scale
	Thousands of concurrent patients

	GPU
	Hundreds of B200 GPUs

	Privacy
	Federated learning (data stays local)

Scaling Considerations
	Bottleneck
	Phase 1 Solution
	Phase 2+ Solution

	Genomics throughput
	Sequential (1 sample)
	Parallel Parabricks instances

	Milvus query latency
	Single-node Milvus
	Cluster with sharding

	BioNeMo inference
	Single NIM per model
	Multiple NIM replicas

	Storage I/O
	NVMe direct
	GPUDirect Storage + RAID

23. Testing Strategy
Unit Tests
	Component
	Test Focus

	VCF Parser
	Variant extraction, quality filtering

	Annotator
	ClinVar/AlphaMissense/VEP lookup accuracy

	Milvus Client
	Index creation, search recall

	MolMIM Client
	SMILES generation, request format

	DiffDock Client
	Docking request/response parsing

	RDKit Scoring
	Lipinski, QED, TPSA calculations

	Composite Scorer
	Weight application, normalization

Integration Tests
	Test
	Validates

	VCF → Annotation → Milvus
	End-to-end Stage 2 pipeline

	Target → PDB → MolMIM → DiffDock
	End-to-end Stage 3 pipeline

	Health check endpoints
	All 10 services responding

	Nextflow modes
	full, target, drug, demo execution

Demo Mode Validation
The demo pipeline mode uses pre-configured inputs to validate the complete pipeline. Input: HG002 FASTQ subset. Expected: VCP identified as target with rs188935092 evidence. Output: 100 ranked novel VCP inhibitor candidates.

24. Implementation Sequence
Recommended Build Order
1. Infrastructure: Docker Compose, Milvus, monitoring stack
2. Stage 1 — Genomics: Parabricks container, fq2bam, DeepVariant, VCF output
3. Stage 2 — Annotation: ClinVar + AlphaMissense + VEP pipeline
4. Stage 2 — Vector DB: Milvus schema, BGE embedding, IVF_FLAT index
5. Stage 2 — RAG: Claude integration, knowledge base, query expansion
6. Stage 2 — Chat UI: Streamlit interface, REST API
7. Stage 3 — Structure: RCSB PDB retrieval, Cryo-EM scoring
8. Stage 3 — Generation: MolMIM NIM, molecule generation
9. Stage 3 — Docking: DiffDock NIM, binding prediction
10. Stage 3 — Scoring: RDKit properties, composite ranking
11. Stage 3 — Reporting: PDF generation, Discovery UI
12. Orchestration: Nextflow DSL2, pipeline modes, landing page
13. Testing: Unit tests, integration tests, demo mode validation
14. Monitoring: Grafana dashboards, alerting rules

Key Dependencies
GRCh38 reference → BWA-MEM2 index → fq2bam alignment
ClinVar + AlphaMissense databases → Annotation pipeline
Milvus running → Embedding indexing → RAG queries
BioNeMo NIMs running → Molecule generation + docking
All services healthy → Landing page green status

This Project Bible is the authoritative technical reference for the HCLS AI Factory. All other documentation assets derive their technical details from this source.
